Bioquímica nutricional

,

Felices 15 años IIDENUT

Estimados colegas

En nombre de todos los que hacemos posible el Instituto IIDENUT, deseo agradecer sus muestras de cariño y confianza a lo largo de todo este tiempo. “Quince años” son dos palabras que se escriben muy rápido, aunque en la práctica, se van construyendo a lo largo de toda una vida. Espero sepan comprender, en este contexto, lo difícil que me resulta separar al profesional de la persona, no obstante, haré mi mejor esfuerzo para sostener mi objetividad y mesura.

Mis primeras reflexiones van destinadas a mi espectacular equipo. Sin ellos, el Instituto IIDENUT no sería lo que es. Sin su fuerza, sin su entusiasmo, sin su corazón o sin su compromiso, nada de esto sería posible. Hemos crecido junto como una familia que incorpora miembros de una manera delirante, sin embargo, hermosa. En este contexto, me resulta imprescindible reconocer el papel inalienable y decisivo de Teresa Herrera en la obtención de buena parte de estos logros. Su consejo y cercanía durante este camino han sido un apoyo importante e invaluable.  Del mismo modo, la importancia que cada uno de los miembros del núcleo intrínseco de la institución y su liderazgo en cada una de las actividades que emprendemos: Andrea Windmueller, Malena Revilla, Alexandra Lopez, Juan Suárez y Carla Zorrilla

Ahora permítanme hacer un breve recuento de lo obtenido en 3 lustros de creación. Comprenderán, al leer, que con los años todo se va escribiendo con más de dos dígitos. En lo editorial, se han editado y publicado 10 libros especializados y más de 50 números de nuestra revista indizada ReNut. En lo académico, hemos capacitado a miles profesionales de nutrición a través de cursos taller, cursos especializados y diplomados. En este último caso, en setiembre abriremos nuestra versión 18 del diplomado “Certificación profesional en nutrición clínica” para América Latina y estaremos completando la primera edición para España. En generación de contenido, nuestras secciones: “Inspírate”, “Nutritip”, “La historia de la nutrición”, “Habilidades blandas”, “Aclarando ideas con IIDENUT”, “Efemérides” y “Análisis de temas de actualidad” estimulan y alcanzan diariamente a miles y miles de profesionales de nutrición y en general de todas las áreas para mostrarles todo lo que significa vivir la nutrición. En esta misma línea, Hablando de Nutrición se trasmite ininterrumpidamente desde hace 13 años y sus casi 300 programas han contribuido con la estructuración de un lenguaje común en torno a nuestra carrera. Nuestra presencia en redes sociales también es consistente. Dos de nuestros blogs especializados reúnen a más de 700 mil seguidores registrados, sin contar nuestra larga presencia en Facebook y más recientemente en Twitter, Instagram, LinkedIn y YouTube. También hemos desarrollado decenas de documentos técnicos para cuerpos de nutrición de diferentes países. En concreto, con cada una de estas actividades, hemos contribuido con la formación, empoderamiento y con la creación de decenas de miles de puestos de trabajo destinados a Nutriólogos, Nutricionistas y Dietistas-Nutricionistas.

Es necesario en este punto, que haga una breve separación. A finales de 2016, el Instituto IIDENUT promovió la creación del Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT) como una forma de integrarnos y recoger las mejores experiencias en la práctica de la nutrición para convertirlas en un estándar de referencia para todos. Aunque nació bajo nuestro amparo, hoy tiene vida propia y transita su camino con fortaleza y aplomo. Sus casi 70 instituciones miembro pueden acreditar lo duro que ha sido el camino, pero lo satisfactorio que ha resultado en función de los logros que se han conseguido a favor de nuestra carrera. Ahora mismo, en agosto, se celebrará el IV Encuentro Iberoamericano del CIENUT con la participación virtual de 3 mil colegas de habla hispana.

El Instituto IIDENUT es, hoy en día, una marca conocida y reconocida en 19 países de Iberoamérica. Cada uno de nuestros logros ha servido para abrirle la puerta a miles de colegas en diferentes ámbitos. Hemos sido la voz de quiénes por años no tuvieron voz y encontraron aquí la forma y el aplomo de decir aquello que conocían, pero no sabían cómo comunicar.

En lo personal, no ha sido fácil dirigir este transbordador espacial que, literalmente, se ha llevado por completo un tercio de mi vida: “28” horas del día, “10” días de la semana, “14” meses del año. Con altas y bajas, he tratado en todo momento de poner el mil porciento de mi fuerza para lograr que nuestras acciones sirvan para motivar y abrirle el camino a un colega que lo necesite. A pesar de esto, tengo poco que reprocharle a mi querido IIDENUT. Quizás, alejarme temporalmente de una de mis más grandes pasiones o regalarme la inexorable soledad que se desprende de vivir así, como en este momento, conversando con mi teclado, con una copa de vino a medio acabar, del mismo modo que sucede en el lobby de un hotel o en la sala de espera de un aeropuerto.

Gracias a todos, por sus espectaculares saludos. No quiero citar nombres, por el temor de olvidar inconscientemente alguno. Gracias a todos por su cariño y confianza. Gracias a todos por creer. Gracias a todos, por escoger la nutrición y sobre todo, gracias colega por querer estudiar a diario, por llegar temprano al trabajo, por pensar que cada una de tus buenas acciones servirá para encumbrar la nutrición, por esforzarte y por llevar nuestra carrera con la dignidad y el respeto que se merece.

 

Felices 15 años, mi querido Instituto IIDENUT.

 

Robinson Cruz
Director general

Read More
,

Cúrcuma, características, composición y usos clínicos

La cúrcuma es una planta herbácea originaria de la India. Aunque este país es el primer exportador mundial de la planta, también la encontramos en países como Costa Rica, Brasil y Perú. La cúrcuma o turmérico pertenece al género Curcuma y es familiar cercano del jenjibre (kión en Perú) y el cardamomo. Dentro del género Curcuma se han identificado más de 100 especies, cada una con características diferentes. Los primeros registros histórico del uso de la cúrcuma datan del año 2500 A.C. Se le ha empleado como especie para condimentar alimentos, como colorante natural y en diversos tratamientos descritos en tratados de medicina natural sobre todo en la región asiática. De ella se extrae la curcumina, no obstante, existen decenas de sustancias adicionales con importantes propiedades moduladoras de la salud. En los últimos años, el uso de la cúrcuma ha sido asociado con el tratamiento de diversas enfermedades como, por ejemplo: osteoartritis, cáncer, diabetes mellitus, obesidad, enfermedades dermatológicas, entre otras. A continuación, un breve análisis sobre lo que dice la evidencia al respecto.

 

Características de la cúrcuma

La cúrcuma es una planta herbácea y perenne (vive más de dos años). Crece hasta un metro de alto. Sus rizomas (tallos subterráneos) presentan forma oblonga o cilíndrica. Los tallos son la parte de la planta desde donde se extraen sus principios activos característicos: a) los curcuminoides no volátiles, y b) los aceites aromáticos volátiles. Tanto el color exterior como interior de los rizomas puede variar significativamente de color de acuerdo con la especie (tabla 1).

Taxonómicamente, la cúrcuma pertenece al género Curcuma. Éste, a su vez, forma parte de la familia Zingiberaceae. Dentro del género Curcuma se han identificado entre 90-100 especies diferentes, aunque se cree que pueden existir muchas más (1). Las especies más estudiadas en el mundo son la Curcuma Longa (Curcuma L.) y la Curcuma Zedoarya (Curcuma Z.), siendo la primera la más abundante de todas. Vulgarmente, la Curcuma L., también es conocida como turmérico, palillo (Perú, Bolivia), polluelo, azafrán cimarrón; yuquilla (Cuba), jengibrillo (Puerto Rico), palillo cholón, palillo chuncho, guisador, azafrán de la India, cúrcuma de la India o jengibre de dorar. [Nota. Esta familia está integrada por hierbas robustas que crecen en bosques húmedos a menos de 2500 m.s.n.m.  Otros miembros connotados de la familia Zingiberaceae, y por tanto familiares cercanos de la cúrcuma, incluyen al cardamomo y al jengibre (kión, en Perú)].

Se cree que la cúrcuma es una planta oriunda del medio oriente y específicamente de la India, el mayor productor mundial. Su uso ha sido descrito desde hace más de 4000 años. Los primeros registros de la cúrcuma se remontan al año 600 A.C. en un documento asirio. Luego, a lo largo de los años ha sido mencionada en Grecia, India, Egipto y demás países de la región.

La cúrcuma ha sido empleada como agente colorante, condimento (ingrediente principal del curry) y como planta medicinal (2), donde ha mostrado poseer efectos positivos en el tratamiento de diversas patologías entre las que podemos citar: osteoartritis (3, 4), cáncer (5), diabetes mellitus (6), obesidad (7), enfermedades dermatológicas (8), entre otras.

 

Tabla 1. Algunas de las especies de cúrcuma, características y principal país productor.

Especie Características País productor
Curcuma longa Presenta color marrón oscuro en el exterior. Su color interno varía de amarrillo a amarillo-naranja. India, Pakistán, Bangladesh, China, Taiwán, Tailandia, Sri Lanka, Birmania, Indonesia, norte de Australia, Costa Rica, Haití, Jamaica, Brasil y Perú.
Curcuma zeodaria También llamada cúrcuma blanca. Su color exterior es parecido a aquel del jengibre.  Su color interno varia de amarrillo a amarillo-naranja, pero con menos intensidad. Noreste de India, Indonesia, Tailandia, Japón y China.
Curcuma aeruginosa También llamada cúrcuma negra o jengibre rosa y azul. Su color exterior es marrón oscuro, pero su color interior es azul. Birmania, Malasia, Tailandia, India e Indonesia.
Curcuma zanthorrhiza También conocida como tumérico de Java. Su color externo e interno es similar a la Curcuma L. Tailandia, Filipinas, Malasia y Sri Lanka.
Curcuma aromática También es conocida como tumérico salvaje. Su color externo e interno es similar a la Curcuma L. China, India y Japón.

Fuente: extraído de referencia 1

 

*****************************************
Para más información, click sobre la foto

*****************************

 

Curcuminoides no volátiles

Se conoce como curcuminoides no volátiles a un grupo de compuestos polifenólicos bioquímicamente activos: la curcumina, la demetoxicurcumina y la bisdemotoxicurcumina. De los tres, el primero es el más estudiado en el mundo (9).

La curcumina ha mostrado ser efectiva en el tratamiento del cáncer en sus diferentes etapas; combatiendo la inflamación y la presencia de radicales libres; controlando la inflamación endotelial que suele agravar el curso de las enfermedades cardiovasculares; permitiendo la regulación de la glicemia en la diabetes mellitus; en el manejo de la obesidad; la enfermedad inflamatoria intestinal; en problemas de la piel; y, en el control de la alergia y el asma. Los mecanismos moleculares son diversos (tabla 2). En el caso del cáncer, modula la actividad de ciertas ciclinas, las vías de regulación de la supervivencia celular a través del control la actividad de oncogenes como MYC-C o proteínas específicas dentro la apoptosis como la BcL. A nivel inflamatorio, reduce la síntesis de interleucinas y citoquinas clave en el desarrollo de la inflamación. En general, la curcumina tiene un impacto significativo sobre el control del proceso inflamatorio asociado con diversas enfermedades sistémicas. Cabe precisar, sin embargo, que la mayoría de estos estudios han sido llevados a cabo in vitro y en animales. Todavía está pendiente una investigación profunda que incluya seres humanos (10).

 

Tabla 2. Efectos de la curcumina

Efecto Mecanismo
Anticáncer Modulo positiva o negativamente el comportamiento de: ciclinas como D1, vías que regulan la supervivencia celular (MYC-C, Bcl-2, Bcl-XL, Bcl-2, Bcl-xL, cFLIP, XIAP y cIAP1), la vía de activación de caspasas (caspasa ¡8, ¡3, and ¡9), la vía supresora de tumores (p53, p21), la vía de receptor de muerte (DR4, DR5), diversas vías asociadas con la proteína quinasa (c-Jun, JNK, PKB, AMPK.
Antiinflamatorio y antioxidante Ejerce regulación negativa sobre interleucinas proinflamatorias (IL1, IL2, IL6, IL8, IL12), citoquinas (TNF, MCP-1). También tiene poder inhibitorio de la síntesis de enzimas tales como iNOS, COX2.
Antiinflamatorio en enfermedades cardiovasculares Inactiva la expresión de hemo oxigenasa 1 (H0-1), reduce la síntesis de TNF,
Control de la diabetes mellitus Estimula la expresión de genes GLUT2, GLUT3, y GLUT4.
Control de la obesidad Suprime la actividad de la MAPK, reduce la diferenciación de adipocitos, reduce la infiltración de macrófagos, reduce la síntesis de leptina y estimula la síntesis de adiponectina.
Enfermedad inflamatoria intestinal Inhibe la AP-1, las proteínas STAT, los receptores PPAR-g, COX2, 5-LOX, Inos. Suprime la activación de la NF-KB basada en TLR4.

 

Fuente: adaptado de referencia 10

 

Aceites aromáticos volátiles

Los aceites aromáticos volátiles contienen cantidades variadas de distintos sesquiterpenoides, monoterpenoides y otros compuestos aromáticos, entre los que podemos citar a: ar-tumerona, alfatumerona, beta tumerona, alfa-curcumena, zingiberna, beta bisabolena, beta sesquifiladrena, gamma atlantona, xantorrizol, curcumeno, curcumol, geracrona, curdiona, curzerenona, beta cariofilena, beta farneseno, beta elemenona, beta elemena, canfor, entre otros (1).

Los aceites aromáticos son extraídos de rizomas frescos o secos empleando destilación por vapor. También se pueden utilizar solventes que se aplican a diferentes partes de la planta. Industrialmente, estos aceites son obtenidos como un subproducto de la extracción de la curcumina desde la oleorresina que la contiene en la planta.  De un modo u otro, los aceites extraídos de la cúrcuma presentan una composición extremadamente variable de compuestos bioquímicamente activos. Estas diferencias dependerán, entre otros factores, de: el genotipo de la planta, su variedad, el lugar donde fue cultivada, el clima, la estación, la técnica de cultivo, la aplicación de fertilizantes, la madurez al momento de la cosecha, el almacenamiento y el método de extracción empleado. Por ejemplo, especies como la curcuma L., pueden presentar cientos de compuestos diferentes, sin embargo, los más abundantes son: ar-turmerona, alfa-turmerona, y beta-turmerona, seguidos por cantidades variables de beta-zingiberena, curlona, ar-curcumena, entre otros (1).

Estudios llevados a cabo in vitro y en animales han mostrado que los compuestos presentes en los aceites aromáticos presentan actividad biológica significativa sobre diversos procesos orgánicos. Entre estos podemos citar: antiagregación plaquetaria, acción hipoglicemiante, antiinflamatoria, neuroprotectora, citotóxica, antibacterial, antifúngica entre otras (tabla 3).

 

Tabla 3. Actividad biológica de los compuestos bioquímicamente activos presentes en los aceites extraídos de la cúrcuma

Compuesto Actividad biológica
Ar-tumerona Antiagregación plaquetaria, hipoglicemiante, antiinflamatorio, neuro protector, citotóxico y anti proliferativo.
Cardiona Anticáncer, antiinflamatorio, antibacterial, antifúngico.
Beta cariopilena Antitumoral
Mirceno Anti mutagénico, anti proliferativo, antioxidante
Germacrona antiinflamatorio, anti androgénico, mejorador de la penetración en la piel, anti proliferativo, antitumoral, antioxidante, antitumoral, antibacterial.
Xantorrizol Antioxidante, nefro protector, neuro protector, hepato protector, antitumoral, antiinflamatorio.
Beta Elemeno Anti proliferativo
Terpinolena Antioxidante
Curcumol Anticáncer
Curzerena Antioxidante, anticáncer
Ar-curcumena Antitumoral
Alfa feladreno antioxidante

Fuente: Adaptado de referencia 1

 

Seguridad en el uso de la curcumina

Estudios llevados a cabo en animales no han mostrado que la curcumina genere toxicidad aguda o crónica. Éstos tampoco han mostrado mutagenicidad ni genotoxicidad, incluso cuando se emplearon dosis elevadas por periodos que comprendían hasta 90 días (11).

Los estudios llevados a cabo en humanos tampoco mostraron efectos tóxicos sobre ningún órgano. En estos trabajos se emplearon dosis de curcumina que variaron entre 0.5 – 4 g/d por un periodo máximo de 6 meses consecutivos. Cabe precisar, sin embargo, que la curcumina puede afectar significativamente la cinética de diversos medicamentos. Los curcuminoides inhiben el CYP2C9 y el CYP3A4 por lo cual, pueden incrementar considerablemente la concentración plasmática de ciertos grupos farmacológicos tales como: anticoagulantes, antibióticos, medicamentos cardiovasculares, medicamentos anticáncer y antidepresivos, por citar algunos grupos (11). En razón de lo citado, debe verificarse la interacción fármaco nutriente previa a la indicación del uso de curcumina.

 

Biodisponibilidad de la curcumina oral

La curcumina presenta una pobre solubilidad en agua, gran inestabilidad química y sobre todo una muy baja biodisponibilidad intestinal. Los estudios llevados a cabo en seres humanos han mostrado que, incluso consumiendo grandes dosis, la curcumina se absorbe pobremente y se elimina muy rápido del cuerpo. En este sentido, se han desarrollado diferentes combinaciones de productos que buscan mejorar la biodisponibilidad oral de la curcumina, tanto mejorando su absorción como reduciendo su eliminación. La asociación de curcumina con pimienta negra incrementa hasta 3 veces la concentración plasmática de la curcumina. La piperina es un alcaloide natural presente en la pimienta negra (Piper nigrum). Este compuesto inhibe potentemente la glucoronidación que sufre la curcumina en el hígado. Al reducir este proceso, se incrementa la concentración plasmática de la curcumina. Las combinaciones sugeridas son: 2 g de curcumina + 5 mg de piperina o 4 g de curcumina + 24 mg de piperina. El uso de lecitina junto con curcumina también mejoró considerablemente su concentración plasmática. La lecitina mejora la biodisponibilidad intestinal de la curcumina. La combinación sugerida incluye 4 g de curcumina y 400 mg de lecitina. También se ha sugerido consumir la curcumina con yema de huevo para aprovechar la lecitina presente en el alimento. Finalmente, los mejores resultados se encontraron en presentaciones sólidas que incluían alguna forma de recubrimiento que proporcionará un mejor vehículo a la curcumina. (12).

  

Conclusiones

  • La cúrcuma es una planta herbácea perteneciente al género Curcuma.
  • Aunque se han identificado más de 100 especies diferentes, la más estudiada y abundante en el mundo es la curcuma longa (Curcuma L.)
  • De los rizomas de la planta se extraen dos productos principales: curcuminoides no volátiles y aceites aromáticos volátiles.
  • Los curcuminoides son la curcumina, la demetoxicurcumina y la bisdemotoxicurcumina.
  • Los aceites aromáticos volátiles contienen cantidades variables de terpenoides diferentes.
  • La cúrcuma ha mostrado poseer efectos positivos en el tratamiento de diversas patologías entre las que podemos citar: osteoartritis, cáncer, diabetes mellitus, obesidad, enfermedades dermatológicas, entre otras.
  • La curcumina se absorbe mal y se elimina rápidamente del cuerpo.
  • Asociar curcumina con pimienta negra, o con lecitina de soya mejora su biodisponibilidad.
  • Las formas sólidas que incluyen algún tipo de recubrimiento han mostrado mejorar significativamente la biodisponibilidad de la curcumina.

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Nutrients. 2018 Sep 1;10(9):1196. doi: 10.3390/nu10091196. PMID: 30200410; PMCID: PMC6164907.
  2. Guest PC, Sahebkar A. Research in the Middle East into the Health Benefits of Curcumin. Adv Exp Med Biol. 2021;1291:1-13. doi: 10.1007/978-3-030-56153-6_1. PMID: 34331681.
  3. Dai W, Yan W, Leng X, Chen J, Hu X, Ao Y. Effectiveness of Curcuma longa extract versus placebo for the treatment of knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021 Nov;35(11):5921-5935. doi: 10.1002/ptr.7204. Epub 2021 Jul 2. PMID: 34216044.
  4. Zeng L, Yu G, Hao W, Yang K, Chen H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep. 2021 Jun 25;41(6):BSR20210817. doi: 10.1042/BSR20210817. PMID: 34017975; PMCID: PMC8202067.
  5. Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients. 2019 Oct 5;11(10):2376. doi: 10.3390/nu11102376. PMID: 31590362; PMCID: PMC6835707.
  6. Karlowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A. CURCUMA LONGA AS MEDICINAL HERB IN THE TREATMENT OF DIABET- IC COMPLICATIONS. Acta Pol Pharm. 2017 Mar;74(2):605-610. PMID: 29624265.
  7. Uchio R, Kawasaki K, Okuda-Hanafusa C, Saji R, Muroyama K, Murosaki S, Yamamoto Y, Hirose Y. Curcuma longa extract improves serum inflammatory markers and mental health in healthy participants who are overweight: a randomized, double-blind, placebo-controlled trial. Nutr J. 2021 Nov 13;20(1):91. doi: 10.1186/s12937-021-00748-8. PMID: 34774052; PMCID: PMC8590273.
  8. Vaughn AR, Branum A, Sivamani RK. Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence. Phytother Res. 2016 Aug;30(8):1243-64. doi: 10.1002/ptr.5640. Epub 2016 May 23. PMID: 27213821
  9. García Ariza Leidy Lorena, Olaya Montes Quim Jorge Humberto, Sierra Acevedo Jorge Iván, Padilla Sanabria Leonardo. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med  [Internet]. 2017  Mar [citado  2023  Abr  05] ;  22( 1 ). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962017000100007&lng=es.
  10. Betül Kocaadam & Nevin Şanlier (2017) Curcumin, an active component of turmeric (Curcumalonga), and its effects on health, Critical Reviews in Food Science and Nutrition, 57:13, 2889-2895, DOI: 10.1080/10408398.2015.1077195
  11. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res. 2018 Jun;32(6):985-995. doi: 10.1002/ptr.6054. Epub 2018 Feb 26. PMID: 29480523.
  12. Dei Cas M, Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients. 2019 Sep 8;11(9):2147. doi: 10.3390/nu11092147. PMID: 31500361; PMCID: PMC6770259.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Métodos de cocción y aparición de sustancias tóxicas

Los métodos de cocción buscan, entre otras cosas, mejorar el valor nutricional del alimento, sus características organolépticas o asegurar su inocuidad. No obstante, estos procesos también pueden contribuir con la aparición de distintos tipos de sustancias cuyo consumo regular está asociado con el desarrollo de enfermades crónicas tales como dislipidemias o incluso cáncer. En un mundo cargado por la presión de la publicidad, hemos puesto particularmente atención en el uso del microondas cuando de lejos es uno de los elementos que menos sustancias tóxicas puede generar cuando es empleado adecuadamente; mientras que, por otro lado se ha asumido que la freidora de aire es totalmente inocua. A continuación, un breve análisis al respecto.

 Métodos de cocción

Los métodos de cocción incluyen a todos aquellos procedimientos que buscan modificar las características de los alimentos crudos. La cocción puede presentar objetivos diversos, entre los que podemos citar: mejorar el aporte nutricional del alimento, mejorar sus características organolépticas (sabor, color, aroma) o eliminar la presencia de sustancias o microorganismos dañinos para el comensal. La cocción se puede llevar a cabo bajo diferentes métodos, sin embargo, la forma más importante de cocer es a través de la transferencia directa o indirecta de calor. También se emplea, aunque en menor medida, la inmersión en sustancias químicas tales como el limón o el ácido acético.

Los métodos de cocción se pueden clasificar en 3 categorías: húmedos, secos y mixtos (tabla 1). En la cocción húmeda, el alimento es introducido en un líquido frío que se va calentando poco a poco o directamente en un líquido caliente. Otra forma de cocción húmeda incluye la exposición del alimento al vapor. En los métodos húmedos el alimento conserva todo su contenido de agua. Nutricionalmente, los métodos húmedos pueden generar la pérdida de ciertos micronutrientes, sobre todo, en aquellos procesos que involucran remojo o cambio de agua durante la preparación. En la cocción seca, por otro lado, no se emplea ni agua ni vapor. La temperatura empleada es considerablemente más alta que aquella empleada en la cocción húmeda. En la cocción seca, el alimento es expuesto directamente al calor. También se puede utilizar aceite o algún otro tipo de grasa como medio que evite que el alimento se pegue a los utensilios empleados para cocinar. La cocción seca genera una considerable pérdida de agua desde el alimento. También puede estimular la activación de ciertas reacciones enzimáticas como la reacción de Maillard (pardeamiento). Tanto la deshidratación como las reacciones enzimáticas contribuyen a que el sabor sea mucho más intenso. Nutricionalmente, la pérdida de micronutrientes suele ser menor en este tipo de cocción (1).

 

Tabla 1. Clasificación de los métodos de cocción y ejemplos.

Tipo de cocción Ejemplos Descripción del método
Cocción húmeda Al vapor Colocar los alimentos en una especie de parrilla o recipiente agujereado que, a su vez, se encuentra encima de un líquido en ebullición.
  Blanquear Colocar el alimento en abundante agua hirviendo hasta por 2 minutos dependiendo del ingrediente. Luego, el alimento debe ser enfriado rápidamente en agua helada.
  Escalfar El alimento se calienta en un líquido mientras se agita lentamente. El líquido no debe hervir.
  Hervir El alimento se coloca en un líquido, generalmente agua en ebullición (100ºC).
  Estofar El alimento se coloca en un recipiente junto con otros productos y se tapa para que se puedan mezclar los jugos.
  Rehogar El alimento es sometido al calor con poco aceite y a una temperatura media-alta (sin llegar a los 100ºC).
  Sofreír El alimento es sometido al calor con poco aceite y a una temperatura menor a aquella usada en el rehogado.
  Guisar El alimento, previamente rehogado, se hace hervir en una salsa o caldo.
  Confitado El alimento es cocinado en grasa caliente (aceite, grasa de pato, manteca, mantequilla clarificada, etc.) con el recipiente tapado para lograr su cocción sin que se dore.
Cocción seca Fritura El alimento se somete a una inmersión rápida en un baño de grasa o aceite a temperaturas altas, de entre 150 y 180 °C.
  Horneado El alimento se introduce en el horno, colocándolo sobre bandejas o cazuelas especiales y sometiéndolo al calor que se transmite por radiación y convección y a una temperatura elevada mayor a 200ºC.
  Parrilla/grillado El alimento es colocado sobre una parrilla o grilla muy caliente.
  Plancha El alimento es colocado sobre una plancha o una placa de metal muy caliente que va directamente sobre el fuego.
  Salteado El alimento se cocina rápidamente en fuego alto con un poco de grasa y en movimientos constantes.
  Rostizado El alimento es atravesado por un fierro y puesto a girar sobre aire caliente o fuego.
  Tostado El alimento es expuesto a calor intenso sin grasa hasta que adquiere un color pardo, caramelo o negro por la caramelización de su exterior.
Cocción mixta Braseado El alimento, previamente frito o sometido a cualquier otro método seco, es puesto a cocción lenta en algún tipo de líquido o con otros alimentos.
  Gratinado El alimento, ya preparado, es cubierto por una capa de queso que al fundirse por el calor directo genera una capa fundida y crujiente.

 

*****************************************
Para más información, click sobre la foto

*****************************

Las sustancias tóxicas que pueden aparecer con la cocción

 

Aunque la cocción genera infinidad de cambios en el alimento que son beneficiosos para el comensal, también puede contribuir con la aparición de sustancias potencialmente tóxicas cuyo consumo regular está asociado con el desarrollo de enfermedades tales como ateroesclerosis o cáncer. Estas sustancias incluyen:  aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas y especies reactivas de oxígeno. Describamos brevemente qué son y cómo se forman.

Aminas aromáticas heterocíclicas (AAHs)

Las AAHs son sustancias que se producen a partir de los 100°C, sin embargo, la intensidad de su producción se incrementa significativamente a partir de los 170°C. Son compuestos que se generan debido a la interacción entre el calor y los compuestos nitrogenados presentes en las carnes. Existen dos tipos de AAHs: a) las térmicas que se producen por reacción de aminoácidos libres, creatina, creatinina y hexosas a temperaturas de entre 170-200°C; y b) las pirolíticas que se producen por ruptura de aminoácidos y proteínas a temperaturas mayores a 300°C (2). Estudios hechos en animales han mostrado que el consumo de AAHs está asociado con cáncer de mama, colon, hígado, piel, pulmón, próstata y otros órganos. ¿Dónde se concentran las AAHs? Se concentran en las zonas muy doradas o quemadas de la carne.

Hidrocarburos aromáticos policíclicos (HAPs)

Los HAPS son compuestos que se forman por la exposición de alimentos ricos en grasas o proteínas a temperaturas superiores a 300°C, aunque su producción tiene un pico máximo a partir de 400°C (3). El consumo crónico de HAPs a través de la ingesta dietaria está asociado con problemas de coagulación (disminución de plaquetas) y del sistema inmunitario (disminución de leucocitos), así como carcinogénesis en algunos casos. Estudios en animales han mostrado que el consumo de HAPs está asociado con el desarrollo de leucemia, tumores gastrointestinales y pulmonares. ¿Dónde se concentran los HAPs? Se concentran en las zonas con sabor a ahumado. Estos elementos le otorgan el sabor ahumado a los alimentos.

Nitritos y nitrosamidas

Los nitritos y nitrosamidas son compuestos nitrogenados que se forman en las carnes cuando éstas son sometidas a altas temperaturas. Su consumo excesivo está altamente relacionado con el desarrollado de cáncer gástrico (4). ¿Dónde se concentran los nitritos y nitrosamidas? Los nitritos se concentran en las zonas muy doradas o quemadas de la carne. Las nitrosamidas, por lo general, se producen en el cuerpo a partir del nitrito ingerido.

Acrilamida

La acrilamida se forma por la reacción entre la asparagina y los azúcares (glucosa y fructuosa) presentes en alimentos de alto contenido de almidón. La formación de acrilamida es parte de la reacción de Maillard que oscurece los alimentos y les otorga un aroma deseable. La formación de acrilamida se produce cuando los alimentos ricos en almidón (papa, camote, yuca, arroz, cebada, quinua, trigo y derivados, entre otros) se someten a temperaturas superiores a los 120 °C, aunque su punto crítico de formación se ubica entre los 160 °C y 200°C. La acrilamida se absorbe intestinalmente y es potencialmente carcinogénica en animales, aunque todavía no se ha definido con exactitud cuál es su impacto en el hombre ni cuáles son los tejidos afectados particularmente (5).

Especies reactivas de oxígeno

Estas sustancias aparecen debido a la exposición de aceites o grasas a la temperatura. Dependiendo de la estructura química de los aceites o grasas, éstos pueden presentar mayor o menor resistencia a la temperatura. El punto de humo o punto de humeo es uno de los factores más importantes que sirven para determinar su resistencia. El punto de humo es la temperatura a la cual el aceite o la grasa produce un espiral continuo de humo que actúa como un indicador de que el aceite o la grasa ha alcanzado su punto máximo de tolerancia al calor. El punto de humo está relacionado con la cantidad de ácidos grasos libres presentes en el aceite o grasa, es decir, no solo importa el contenido de ácidos grasos insaturados, sino que además importa la presencia de ácidos grasos libres. Por definición, mientras más alto sea el punto de humo, más apropiado será el aceite o la grasa para cocinar o freír. Sin embargo, debe ser precisado que mientras más veces re-utilice el mismo aceite o grasa, el punto de humo será cada vez menor. Por ejemplo, si en el primer uso fue de 200°C, en su segundo uso podría ser 170°C, en el tercer uso 140°C y así sucesivamente. Mientras más bajo sea el punto de humo, más rápido se empezarán a producir sustancias tóxicas al someter al aceite o grasa a la temperatura (6). Cuando un aceite o grasa alcanza su punto de humo se empiezan a producir una serie de reacciones químicas que incluyen: oxidación, hidrólisis, la ciclalización, la polimerización y eventualmente degradación hasta compuestos volátiles altamente cancerígenos (también llamados genotóxicos)(7). Además, también se produce la ruptura de enlace que genera una liberación significativa de cantidades importantes de especies reactivas de oxígeno (ROS). Éstos pueden contribuir con el aumento de la presión arterial, producir ateroesclerosis, disfunción endotelial, vaso relajación fallida y dislipidemias (8,9).

Métodos de cocción y sustancias tóxicas presentes en los alimentos

La temperatura es uno de los factores que más contribuye con la aparición de sustancias tóxicas en los alimentos. Mientras más alta sea, mayor será la concentración de estos elementos en la preparación. Cualquier proceso de cocción que supere los 180°C es un potencial generador de sustancias tóxicas. En la tabla 2, se puede observar cuáles son los métodos de cocción que más están relacionados con la generación de elementos indeseables.

La cocción húmeda emplea temperaturas que difícilmente superan los 130°C, razón por la cual, la aparición de AAHs, HAPs, nitritos, acrilamidas o especies reactivas de oxígeno es prácticamente imposible.

La cocción seca involucra a una gran cantidad de técnicas de cocción. Éstas se pueden producir por descomposición del aceite o grasa que se emplea para evitar que el alimento se pegue en el utensilio de cocción o sobre el propio alimento por efecto directo o indirecto de la temperatura.

Por el lado del aceite o grasa, debe recordarse que son sensibles a las temperaturas elevadas. La mayoría de los aceites comerciales presentan un punto de humo que oscila entre los 180-220°C, sin embargo, ese rango cae considerablemente cuando el aceite se emplea a temperaturas mayores o se reutiliza.

Por el lado de las sustancias producidas sobre el alimento, prácticamente todas, se empiezan a producir intensamente por encima de los 200°C. La presencia de zonas más doradas de lo normal o quemadas es una evidencia directa de la presencia de AAHs, nitritos o acrilamidas. El sabor ahumado, mientras más intenso sea, indica la presencia de HAPs.

Desde hace mucho existe la controversia sobre si el microondas puede generar sustancias tóxicas en el alimento. Desde el lado de las ondas emitidas por este artefacto no existe evidencia alguna que puedan ser absorbidas por el alimento y por tanto puedan afectar nuestra salud. Ahora bien, cocinar demasiado el alimento en horno microondas o en un horno convencional puede generar zonas demasiado doradas o quemadas que son ricas en AAHs, nitritos o acrilamidas dependiendo si se trata de carnes o alimentos ricos en almidón, respectivamente.

Por otro lado, las freidoras de aire también se han presentado como una solución segura para cocinar saludablemente. Esto está directamente relacionado con el no uso de aceite o grasa, sin embargo, la posibilidad de que se puedan formar otras sustancias como AAHs, nitritos o acrilamidas sigue estando latente. Esto dependerá de la temperatura empleada para cocinar.

 

Tabla 2. Tipos de cocción, ejemplos, temperaturas empleadas y sustancias tóxicas en riesgo de aparición.

Tipo de cocción Ejemplos Temperatura empleada Sustancia tóxica en riesgo de aparición
Cocción húmeda Al vapor, blanquear, escalfar, hervir, estofar, guisar, reahogar, confitado. Hasta 150°C Ninguna
Cocción seca Fritura, horneado, parrilla/grillado, plancha, rostizado, tostado. 150°C – 400 °C Aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas, especies reactivas de oxígeno (ROS).

 

Cocción mixta Braseado, gratinado 150°C – 400 °C Aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas, especies reactivas de oxígeno (ROS).

 

Recomendaciones

  • Utilice con regularidad métodos de cocción húmedos.
  • Reduzca el consumo de métodos de cocción que empleen temperaturas superiores a los 200°C.
  • Reduzca el consumo de métodos de cocción que sometan el alimento al fuego directo.
  • Deseche las zonas más doradas o quemadas presentes en los alimentos.
  • El marinado o adobado reduce la producción de AAHs y nitritos durante los procesos secos.
  • Reduzca el consumo de alimentos que han sido expuestos al humo de brasas por mucho tiempo.

 

Si quieres aprender más sobre cómo aplicar esta información y otras más en el tratamiento nutricional de tus pacientes, participa de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFSIONAL EN NUTRICIÓN CLÍNICA. Haz click, AQUÍ, para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Lara A. Guía de métodos de cocción. Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez. Vicerrectorado de Extensión Académica Subdirección de Extensión IPMJMSM Diplomado de Profesionalización Gastronómica. 2018.
  2. [tesis doctoral] Agudelo L. Determinación de aminas aromáticas heterocíclicas en carnes cocidas mediante extracción con microondas y líquidos iónicos. Universidad Nacional de la plata. Argentina 2015. Disponible en: http://sedici.unlp.edu.ar/handle/10915/46523
  3. Agencia española de seguridad alimentaria y nutrición. Hidrocarburos aromáticos policíclicos. España: 2020.
  4. Song P, Wu L, Guan W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 2015, 7, 9872–9895; doi:10.3390/nu7125505.
  5. Agencia española de seguridad alimentaria y nutrición. España: 2020.
  6. Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med J. 2016 Sep;50(3):189-196. PMID: 27752194; PMCID: PMC5044790.
  7. Ganesan K, Sukalingam K, Xu B. Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review. Crit Rev Food
  8. Kumar Ganesan, Kumeshini Sukalingam & Baojun Xu (2017): Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1379470 Sci Nutr. 2019;59(3):488-505. doi: 10.1080/10408398.2017.1379470. Epub 2017 Oct 20. PMID: 28925728
  9. 5Kadhum AA, Shamma MN. Edible lipids modification processes: A review. Crit Rev Food Sci Nutr. 2017 Jan 2;57(1):48-58. doi: 10.1080/10408398.2013.848834. PMID: 26048727.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Metales contaminantes en los pescados

El pescado y sus derivados son un componente esencial en la dieta de las personas. Su proteína de alta calidad y sus ácidos grasos son nutrientes de un valor excepcional. Lamentablemente, la actividad industrial ha contribuido con la contaminación del agua de ríos y mares, con lo cual, el consumo de carne de pescado podría acarrear ciertos riesgos que vale la pena analizar. Los metales son, en este contexto, uno de los contaminantes más importantes que se pueden encontrar en este tipo de animal. Sin embargo, ni todos los metales son tóxicos para los seres humanos, ni todos los pescados presentan niveles tan elevados de contaminación como para prohibirlos en la dieta. Revisemos brevemente que se ha sabe al respecto.

 

Valor nutricional del pescado

El pescado y sus derivados son considerados un componente esencial de la dieta humana debido a su significativamente alto valor nutricional, sobre todo, en función de su contenido elevado de proteína y grasa de buena calidad; en menor medida también aporta algunas vitaminas y minerales. La proteína es el componente más abundante de la carne de pescado. Ésta representa entre 15%-21% del peso de la pulpa. Esta proteína es de alto valor biológico, es decir, presenta todos los aminoácidos esenciales, aunque con cantidades ligeramente menores de triptófano comparado con la carne de res o de otros mamíferos (1). La carne de pescado tiene una digestibilidad significativamente mayor a aquella de la carne de res o de pollo. La puntuación de aminoácidos corregida por su digestibilidad (PDCAAS, por sus siglas en inglés) de la carne de pescado es de aproximadamente 95% contra el 94% o 92% de la carne de pollo y res, respectivamente (2). De hecho, la carne de pescado puede ser digerida con tanta facilidad que la podemos consumir prácticamente cruda. El otro estandarte nutricional de la carne de pescado lo encontramos en su contenido de grasa. Éste puede fluctuar entre 0.2%-25% del peso de la pulpa dependiendo del tipo de pescado (1). Esta grasa es insaturada rica en ácidos grasos esenciales. Cabe resaltar, en este sentido, que la grasa del pescado es la fuente más importante de ácido graso eicosapentaenoico (EPA) y de ácido graso docosahexaenoico (DHA), el primero útil en el tratamiento de problemas inflamatorios y el segundo en la salud neurológica, y en conjunto importantes en el tratamiento de diversas enfermedades crónico degenerativas.

 

Metales contaminantes

Los metales contaminantes están presentes en el ambiente de manera natural, pero su concentración puede incrementarse significativamente a partir de la actividad industrial humana. No todos son considerados tóxicos o peligrosos ni para los peces ni para los seres humanos. En algunos casos, incluso, pueden ser útiles para la persona como es el caso de hierro, cobre, zinc o selenio, siempre y cuando mantengan ciertas concentraciones y no las superen. Por otro lado, existe otro grupo de metales que son considerados tóxicos incluso en muy pequeñas concentraciones como es el caso del plomo (Pb), niquel (Ni), antimonio (Sb), cadmio (Cd), arsénico (As) o mercurio (Hg) por citar algunos ejemplos. También es importante considerar la forma química en la que se encuentran en la carne o en la naturaleza porque de eso dependerá qué tanto se puede acumular en el animal (3).

La actividad humana deposita grandes cantidades de estos metales en los suelos. La fundición, la minería, la fabricación de material médico y odontológico, la fabricación de herbicidas, fungicidas, la combustión de combustibles fósiles, la incineración de basura y otros procesos industriales son considerados fuentes importantes y permanentes de estos contaminantes. Cuando estos metales son depositados en el suelo pueden llegar a ríos pequeños o ser vaporizados y llegar a las nubes. En ambos, tanto a través de ríos, a través del ciclo del agua, o depositados directamente, alcanzan el sedimento marino donde pueden ser procesados por las bacterias, incorporarse al plancton o ser consumidos por peces pequeños que a su vez serán alimento de peces de mayor tamaño. Aunque en la práctica, son muchos los metales potencialmente tóxicos, en esta revisión solo nos referiremos a 4 de los más estudiados.

Arsénico (As). El As es utilizado en actividades de fundición, fabricación de vidrio, en la fabricación y uso de pesticidas, herbicidas, fungicidas y preservantes de madera.

El arsénico existe en 4 estados de oxidación: -3, 0, +3 y +5. La mayoría de los compuestos arsenicales se encuentran en estado de oxidación pentavalente (+5). Presentan forma orgánica e inorgánica (4). Esta última es la más tóxica por ser más estable y soluble en agua. Esta propiedad le permite ser absorbida en el tracto digestivo, cavidades e incorporarse en los músculos. La forma orgánica no se acumula en el cuerpo humano y se excreta con facilidad. La forma inorgánica se encuentra disuelta en agua mientras que la forma orgánica está, principalmente, presente en la carne de pescado.

La exposición aguda a As puede generar dolor abdominal, vómitos, diarrea, debilidad muscular, enrojecimiento de la piel, mientras que la exposición crónica puede causar defectos en la piel y cáncer.

Cadmio (Cd). El Cd puede ser liberado a partir de la fundición de otros metales, la combustión de combustibles fósiles, la incineración de basura y el uso de ciertos fertilizante.

La forma libre de Cd está presente en el agua dulce, mientras que, en los océanos, la alta salinidad del agua estimula la formación de compuestos inorgánicos tales como el cloruro de Cd. En este contexto, el Cd presente en el agua dulce es mucho más tóxico que el Cd presente en el mar debido a que la biodisponibilidad del Cd a partir de sus compuestos inorgánicos es mucho menor para los peces (5). A pesar de que los peces de mar contienen muy poco Cd libre, ellos siguen siendo una de las principales fuentes de cadmio tóxico para el hombre. El Cd ingresa en ellos a través de las branquias, el plancton y otros elementos de su dieta. Una vez dentro, el Cd tiende a formar complejos con las proteínas, por tanto, tiene una fuerte tendencia a acumularse.

La exposición al Cd es altamente tóxica para los seres humanos. Este mineral puede producir hipertensión arterial, desórdenes cardiovasculares y neurológicos, defectos y debilidad ósea, así como también, presenta un efecto carcinogénico.

Plomo (Pb). El plomo es un metal ampliamente empleado en la industria. La combustión de gasolina alta en plomo es una de las principales fuentes de plomo que alcanzan la atmósfera. De allí pasa al mar, donde es fácilmente incorporado en la circulación sanguínea de los peces para acumularse finalmente en sus tejidos. Los compuestos orgánicos de Pb son más tóxicos que los compuestos inorgánicos. El 50-70% del Pb encontrando en los océanos se encuentra bajo la forma orgánica (2).

Mercurio (Hg). El mercurio es el metal pesado que más impacto tiene en la salud de las personas. El Hg es utilizado en la fabricación de pinturas, equipos eléctricos, baterías, fungicidas, así como también en la medicina, odontología y en el sector militar. La minería también contribuye significativamente con el aporte de Hg en la naturaleza.

El mercurio está presente en la naturaleza en diferentes formas. El Hg (Hg0) elemental y los iones de Hg (Hg+2) son abundantes en el ambiente, pero no se acumulan en los peces. Ahora bien, la evaporación del agua y su pase a la tierra crea un ciclo que contribuye a la formación de diferentes compuestos de Hg. Los compuestos orgánicos son más tóxicos por ser más estables y acumulables en el cuerpo humano, mientras que los compuestos inorgánicos no son considerados tóxicos porque se acumulan pobremente en el cuerpo. Los compuestos inorgánicos incluyen: cloruro mercurioso, cloruro mercúrico, acetato mercúrico y sulfato mercúrico. Lamentablemente, tanto las bacterias del sedimento marino como las branquias de los peces pueden metilar estos compuestos hasta formar compuestos orgánicos tales como el altamente tóxico metilmercurio (MeHg). Aunque también se pueden formar otros compuestos metilados, el metilmercurio es el más altamente tóxico conocido (2).

 

*****************************************
Para más información, click sobre la foto

*****************************

Exposición a metales contaminantes a través del consumo de pescado

Los cuerpos regulatorios alrededor del mundo han mostrado una fuerte preocupación sobre el contenido de metales contaminantes en el pescado y sus derivados. Además, diversas organizaciones gubernamentales nacionales han establecido sus propios valores de consumo máximo tolerable en función de la situación particular. A continuación, una breve descripción al respecto.

El arsénico está presente en diferentes productos alimenticios. Lamentablemente, hasta el momento las referencias sobre límites máximos en pescados son muy escazas. Tomando en cuenta que las formas inorgánicas de arsénico son las más tóxicas, los cereales serían los principales contribuyentes a la dieta (6); mientras que los pescados, tendrían un aporte mucho menor porque la mayor parte del arsénico presente en estos animales se encuentra bajo la forma de compuestos orgánicos relativamente inocuos. La arsenobetaína es el principal compuesto organoarsenical presente en productos marinos. También se pueden encontrar arsenolípidos tales como arsenohidrocarburos y arseno ácidos grasos (4).

En relación con el plomo, el límite máximo en la carne de pescado ha sido establecido en 0.3 mg/kg (7). En este caso, la única forma de evitar o reducir el contenido del metal en las carnes es la reducción de la emisión de partícula del metal. Del lado del cadmio, los límites máximos en la carne de pescado han sido diferenciados de acuerdo con la especie de pescado y varían entre 0.05 mg/kg y 0.25 mg/kg (8).  Debe tomarse en consideración, que debido a la salinidad del agua de mar, la biodisponibilidad de cadmio en los peces marinos es mucho menor que en los peces de agua dulce. En el agua de mar, el cadmio forma complejos con el cloro del agua y de ese modo se absorbe con menor facilidad.

El mercurio, y sobre todo el metilmercurio, es el metal sobre el cual se ha desarrollado mayor investigación. Los límites máximos tolerables en la carne se ubican en 1 mg/kg (9). En 2015, el grupo de estudio para la prevención de los efectos adversos para la salud (GEPREM-Hg) integrado por representantes de diversas sociedades científicas españolas publicaron un consenso al respecto (10). De este documento, extraemos las ideas más importantes:

  • La principal fuente de exposición de las personas al MeHg es el pescado.
  • Los peces de mayor tamaño como el emperador, pez espada, tiburón, atún o merlín son los que presentan mayor contenido de MeHg.
  • El MeHg se une a la proteína, por eso, es imposible eliminarlo.
  • La presentación del pescado (fresco, congelado, enlatado) no influye en su contenido de MeHg.
  • El líquido de cobertura en una conserva (aceite, agua, escabeche) no influye en el contenido de MeHg.
  • El contenido de MeHg varía de especie a especie y de zona de pesca.
  • No es necesario prohibir el consumo de ciertas especies, solo espaciarlo.
  • El EPA y el DHA presentes en el pescado pueden tener efectos protectores neurológicos contra los daños del MeHg. El selenio también parece tener efecto protector por lo que se sugiere medir la relación Se/MeHg en sangre para determinar el grado de toxicidad del metal.
  • En relación con el consumo de las especies más contaminadas como son pez espada, tiburón, atún rojo, se sugiere que las mujeres embarazadas, con sospecha, o en periodo de lactancia no las consuman; que los niños < 3 años no las consumen; que los niños de 3-12 años limiten su consumo a 50g/semana o 100g/quincenal y no incluir pescados de la misma categoría en la misma semana.

 

 Tabla 1. Máximo limite tolerable de consumo de metales a través de la carne de pescado

Metal Tipo de pescado Límite máximo Referencia
Plomo Carne de pescado en general 0.3 mg/kg Referencia 7
Cadmio Carne de pescado excluidas las especies especificadas líneas abajo 0.05 mg/kg Referencia 8
Carne de caballa (Scomber species), atún (Thunnus species, Euthynnus species, Katsuwonus pelamis) y bichique (Sicyopterus lagocephalus) 0.10 mg/kg
Carne de melva (Auxis species) 0.15 mg/kg
Carne de anchoa (Engraulis species), pez espada (Xiphias gladius) y sardina (Sardina pilchardus) 0.25 mg/kg
Mercurio Carne de músculo de los siguientes pescados: rape (especie Lophius) bagre atlántico (Anarhichas lupus), bonito (Sarda sarda), anguila (especie de Anguila), emperador, reloj anaranjado, pez soldado rosado (especie Hoplostethus), granadero (Coryphaenoides rupestris), halibut (Hippoglossus hippoglossus), carpintero real (Genypterus capensis), marlín (especie Makaira), gallo (especie Lepidorhombus), salmonete (especie Mullus), anguila rosada (Genypterus blacodes), lucio (Esox lucius), bonito simple (Orcynopsis unicolor), pobre bacalao (Tricopterus minutos), cazón portugués (Centroscymnus coelolepis), rayas (especies Raja), gallineta nórdica (Sebastes marinus, S. mentella, S. viviparus), pez vela (Istiophorus platypterus), pez sable (Lepidopus caudatus, Aphanopus carbo), dorada, pandora (especie Pagellus), tiburón (todas las especies), caballa serpiente o pez mantequilla (Lepidocybium flavobrunneum, Ruvettus pretiosus, gempylus serpentario), esturión (especie Acipenser), pez espada (Xiphias gladius), atún (especie Thunnus, especie Euthynnus, Katsuwonus pelamis) 1.0 mg/kg Referencia 9

 

 

Investigación en Perú sobre la presencia de metales contaminantes en los pescados

En el Perú se requiere más investigación al respecto debido a nuestra particular diversidad geográfica con cuerpos de agua en mar, costa, sierra y selva. Al respecto, algunos trabajos de investigación han mostrado conclusiones que deben ser valoradas apropiadamente. Un estudio llevado a cabo en 2015 (11) en el Terminal Pesquero de Villa María del Triunfo determinó que el contenido de cadmio en jurel fue de 0.35 mg/kg, muy por encima del 0.05 mg/kg permitido por la regulación internacional.

Un estudio llevado a cabo en 2015 (12) buscó determinar el contenido de mercurio, cadmio, plomo y arsénico en 7 especies de peces (periche, dica, mojarra, chalaco, camotillo, lisa y sábalo) consumidos comúnmente y colectadas del río Tumbes. Los resultados obtenidos se compararon con los contenidos máximos permisibles (CMP) y los estándares a utilizar corresponden a arsénico, cadmio, mercurio y plomo, según la Unión Europea (2006) y Canadá (2009). Se determinó que el contenido promedio de Hg y As es inferior al CMP correspondiente, por lo cual se puede afirmar que sí cumple con dicho parámetro de calidad. Sin embargo, el contenido de Pb y Cd superó el parámetro de calidad CMP, no cumpliendo con dicho parámetro.

Un estudio llevado a cabo en 2021 (13), en las granjas de peces en el lago Titicaca encontró diferentes concentraciones de zinc, hierro, cadmio, manganeso, plomo, cobre y mercurio en la carne de truchas arcoíris; sin embargo, en ninguno de los casos las concentraciones superaron los niveles permitidos internacionalmente. Esto demostró que eran aptas para el consumo humano.

Un estudio llevado a cabo en 2019 (14) en el río Monzón en Huánuco mostró niveles por encima de los permitidos para cadmio, cobre y plomo en tres especies de peces bentónicos: boquichico, carachama y julilla. En los tres casos la mayor concentración de los metales se ubicó en el hígado, riñón y músculo respectivamente. Otros estudios han mostrado que algunos metales pesados también se pueden acumular en la cabeza del animal.

 

Recomendaciones

  • En principio, la recomendación más importante de todas es no evitar el consumo de pescado debido a su elevado valor nutricional.
  • No todas las especies presentan niveles preocupantes de contaminación. Elija las especies más pequeñas sobre las de mayor tamaño. Por ejemplo, la caballa sobre el perico.
  • El consumo de pescados de gran tamaño como atún, perico o pez espada debería hacerse una o dos veces por mes.
  • El consumo de sardina, caballa, jurel, bonito puede hacerse 2 a 3 veces por semana.
  • Revise la etiqueta de las conservas que utiliza con regularidad. Muchos de esos productos son importados desde Asia, donde existen mayores problemas de contaminación.
  • Las recomendaciones sobre consumo de una u otra especie no siempre aplican a la realidad peruana. Lo mismo puede ser tomado en cuenta por los demás países de la región.
  • En general, en Latinoamérica existe un riesgo creciente asociado con la contaminación de riesgo por la actividad minera ilegal. En este aspecto, se requiere mucha más investigación.

 

Si quieres aprender más sobre cómo aplicar esta información y otras más en el tratamiento nutricional de tus pacientes, participa de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFSIONAL EN NUTRICIÓN CLÍNICA. Haz click, AQUÍ, para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Suárez López M. M., Kizlansky A., López L. B.. Evaluación de la calidad de las proteínas en los alimentos calculando el escore de aminoácidos corregido por digestibilidad. Nutr. Hosp.  [Internet]. 2006  Feb [citado  2023  Feb  28] ;  21( 1 ): 47-51. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112006000100009&lng=es.
  2. Ahmed I, Jan K, Fatma S, Dawood MAO. Muscle proximate composition of various food fish species and their nutritional significance: A review. J Anim Physiol Anim Nutr (Berl). 2022 May;106(3):690-719. doi: 10.1111/jpn.13711. Epub 2022 Apr 8. PMID: 35395107.
  3. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016 Jan 15;96(1):32-48. doi: 10.1002/jsfa.7360. Epub 2015 Sep 7. PMID: 26238481.
  4. Medina-Pizzali María, Robles Pamela, Mendoza Mónica, Torres Celeste. Ingesta de arsénico: el impacto en la alimentación y la salud humana. Rev. perú. med. exp. salud publica  [Internet]. 2018  Ene [citado  2023  Feb  27] ;  35( 1 ): 93-102. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342018000100015&lng=es.  http://dx.doi.org/10.17843/rpmesp.2018.351.3604.
  5. Tomailla, J; Iannacone, J. Toxicidad letal y subletal del arsénico, cadmio, mercurio y plomo sobre el pez Parachaeirodon innesi neon tetra (Characidae) / Lethal and sublethal toxicity of arsenic, cadmium, mercury and lead on fish Paracheirodon innesi neon tetra (Characidae). Revista de toxicología [Internet]. toxicol ; 35(2): 95-105, 2018. Tab.
  6. Agencia Europea de Seguridad Alimentaria y Nutrición. Ficha técnica del arsénico. Disponible en: https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/ampliacion/arsenico.htm Vista en febrero 2023.
  7. Unión Europea. Reglamento (UE) 2021/1317 DE LA COMISIÓN de 9 de agosto de 2021 por el que se modifica el Reglamento (CE) n.o 1881/2006 en lo relativo a los contenidos máximos de plomo en determinados productos alimenticios.
  8. Unión Europea. Reglamento (UE) Nº 488/2014 de la Comisión, de 12 de mayo de 2014, que modifica el Reglamento (CE) Nº 1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios. Diario Oficial de la Unión Europea L138, 13 de mayo de 2014, pp. 75.
  9. European Commission. Commission Regulation No629/2008 of 2 July 2008 amending Regulation No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal L 2008;173:6-9.
  10. Gonzalez M, Bodas A, Guillen J, Rubio M, Martinez J, Herraiz M, Martell N, et al. Documento de consenso sobre la prevención de la exposición al metilmercurio en España. Nutr Hosp. 2015;31(1):16-31
  11. Marín G, García M. CONTAMINACIÓN POR CADMIO EN ALIMENTOS MARINOS, LIMA – 2015. Ciencia e Investigación 2016; 19(1): 24-28
  12. Espinoza D, Falero S. Niveles de mercurio, cadmio, plomo y arsénico en peces del río Tumbes y riesgos para salud humana por su consumo. del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM Vol. 18, Nº 36, pp. 35 – 41 Julio – Diciembre 2015
  13. Chui H, Roque B, Huaquisto E, Sardón D, Belizario G, Calatayud A. Metales pesados en truchas arcoíris (Oncorhynchus mykiss) de crianza intensiva de la zona noroeste del lago Titicaca. Rev Inv Vet Perú 2021; 32(3): e20398. https://dx.doi.org/10.15381/rivep.v32i3.20398
  14. Rosales E, Cotrina M, Valdivieso G, Sales F, García E, Ordoñez E. Bioacumulación de metales pesados en tres especies de peces bentónicos del río Monzón, región Huánuco. REBIOL ISSN 2313-3171, Año 2019, Número 40 (1): 69 – 78, Enero – Junio. DOI: http://dx.doi.org/10.17268/rebiol.2020.40.01.08

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

Resistencia a la insulina

La resistencia a la insulina (RI), resistencia insulínica o insulino-resistencia es un evento metabólico en el cual los receptores celulares de la insulina, principalmente aquellos ubicados en hepatocitos, miocitos y adipocitos, presentan una respuesta anormalmente disminuida frente a la acción estimulante de la hormona (1).

La RI está asociada con alteraciones fisiopatológicas como aquellas que se desarrollan durante la obesidad o como parte de la respuesta orgánica a injurias graves como sucede en los pacientes críticos (2). No obstante, la RI no es un evento que se presente única y exclusivamente en medio de un cuadro patológico. De hecho, la RI se puede presentar de manera natural durante el tercer trimestre del embarazo (3) o durante la pubertad (4). En cualquiera de estas circunstancias, la RI es un evento potencialmente reversible que puede complicarse irremediablemente si existe de por medio un cuadro de obesidad.

Aunque la definición de resistencia a la insulina parece ser sencilla, involucra decenas de cambios orgánicos cuyas consecuencias paulatinamente van influenciando a todo el organismo. Sin premisas bioquímicas claras es difícil entender tanto el origen de esta condición como el impacto que tienen nuestras decisiones nutricionales sobre la respuesta clínica de los pacientes.

 

¿Qué es el receptor de insulina?

El receptor de insulina es una proteína que está conformada, a su vez, por 4 subunidades proteicas: dos subunidades alfa que sobresalen fuera de la célula y dos subunidades beta que atraviesan la membrana celular de lado a lado [Nota. El receptor de insulina es particularmente abundante en hígado, tejido adiposo y muscular].

 

 

¿Cómo se produce la activación del receptor de insulina?

Las subunidades alfa inhiben el funcionamiento de las subunidades beta. Cuando las subunidades alfa entran en contacto con la insulina se inactivan. La inactivación de las subunidades alfa anula su efecto inhibitorio sobre las subunidades beta permitiendo que estas últimas se activen. La activación de las subunidades beta hace que éstas empiezan a captar grupos fosfato a nivel de los residuos de tirosina (este proceso se llama autofosforilación del receptor) (5). Este evento es clave para entender la resistencia a la insulina, en términos moleculares, porque todos los eventos posteriores a la activación del receptor se llevarán a cabo, únicamente si la fosforilación se produce a nivel de los residuos de tirosina; si la fosforilación se presenta a nivel de los residuos de serina y treonina no habrá actividad fisiológica posterior.

 

¿Qué sucede cuando el receptor de insulina es activado?

Si la activación del receptor de insulina se produce adecuadamente y a nivel del residuo de tirosina, éste empezará a captar unas proteínas citoplasmáticas que se denominan Sustrato del Receptor de Insulina 1 (IRS-1, por sus siglas en inglés para Insulin Receptor Sustrate) que a su vez pueden asociarse con diversos compuestos para desencadenar decenas de eventos metabólicos dentro de la célula, entre los que podemos citar:

 

  • Liberación de receptores GLUT4 desde vacuolas que se encuentran en el plasma hacia la membrana celular. Los receptores GLUT4 permiten el ingreso de la glucosa en las células y, la reducción consecuente de la glicemia.
  • Estímulo de la síntesis de glucógeno e inhibición de su degradación en hígado y músculo, con lo cual la glucosa es almacenada.
  • Estímulo para la glucólisis e inhibición de la gluconeogénesis.
  • Estímulo de la actividad de la Liproteina Lipasa (LPL) y triglicérido sintasa, con lo cual no solo se capta ácidos grasos hacia el interior de la célula, sino que además son almacenados como triglicéridos. Esto contribuye con su reducción en el torrente sanguíneo.
  • Inhibición de la lipasa hormona sensible con lo cual se detiene la lipólisis.


*****************************************
Para más información, click sobre la foto

*****************************

 

¿Cómo se produce la liberación de insulina?

La glucosa es el principal estimulante y responsable de la secreción de insulina, aunque los ácidos grasos, los aminoácidos, las incretinas (péptidos producidos en el intestino por efecto de la presencia de alimento) y otros compuestos también pueden actuar como secretagogos (6). Cuando la glicemia sube, la glucosa ingresa libremente a las células pancreáticas a través de los receptores GLUT2 [Nota. Debe haber una alta concentración de glucosa en plasma para que se produzca este ingreso]. En el interior, la glucosa es metabolizada y el ATP producido inhibe los canales de potasio sensible a ATP, produciéndose, en consecuencia, el ingreso de calcio a la célula. Este calcio desencadena varias reacciones consecutivas que culminan en la ruptura de la unión péptido C – insulina y la posterior liberación de insulina [Nota. La proinsulina, una proteína de 101 aminoácidos formada por péptido c e insulina es la forma bajo la cual se almacena la insulina en el citoplasma de la célula beta. Cuando el calcio sube la proinsulina se rompe en sus componentes: péptido c (50 aminoácidos) e insulina (51 aminoácidos). Hasta un 10% de la proinsulina se libera intacta].

 

¿Cómo se desarrolla y que sucede en la resistencia a la insulina?

Como ya se comentó líneas arriba, la resistencia a la insulina es un evento metabólico en el cual los receptores celulares de la insulina dejan de responder a la acción estimulante de la hormona. Pero ¿por qué los receptores dejan de responder? Se ha propuesto que, en personas con obesidad, el consumo excesivo de energía genera una acumulación anormalmente alta de ácidos grasos (AG) en el citoplasma de las células. En ese contexto, los AG interferirían con la fosforilación del receptor de insulina y, por ende, con todos los procesos de activación posteriores. Esta interferencia no permitiría la liberación de receptores GLUT4 por ende la glicemia se mantendría lo suficientemente alta como para estimular la liberación de mayor cantidad de insulina que forzará la “normalización” de la glicemia. Tampoco se producirá la activación de la lipoproteína lipasa con lo cual los ácidos grasos subirán en sangre o se afectará la síntesis de proteína muscular. Por otro lado, en los pacientes con inflamación la inactivación del receptor de insulina estaría mediada por la presencia de citoquinas pro-inflamatorias como el factor de necrosis tumoral (TNF).


Si quieres saber más sobre bioquímica aplicada a la nutrición, te invito a  revisar el temario de nuestro curso especializado haciendo click en  
Información del curso

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Freeman AM, Pennings N. Insulin Resistance. 2021 Jul 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 29939616
  2. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res. 2019 Nov 19;2019:5320156. doi: 10.1155/2019/5320156. PMID: 31828161; PMCID: PMC6885766.
  3. Kelsey, M.M., Zeitler, P.S. Insulin Resistance of Puberty. Curr Diab Rep16, 64 (2016). https://doi.org/10.1007/s11892-016-0751-5
  4. Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord. 2018 Apr;23(2):149-157. doi: 10.1007/s40519-018-0481-6. Epub 2018 Feb 3. PMID: 29397563.
  5. Rivas AM, Nugent K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am J Med Sci. 2021 Mar;361(3):297-302. doi: 10.1016/j.amjms.2020.11.007. Epub 2020 Nov 8. PMID: 33500122.
  6. Mendivil Anaya Carlos Olimpo, Sierra Ariza Iván Darío. ACCIÓN INSULÍNICA Y RESISTENCIA A LA INSULINA: ASPECTOS MOLECULARES. rev.fac.med.  [serial on the Internet]. 2005  Oct [cited  2015  Dec  02] ;  53( 4 ): 235-243. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-00112005000400005&lng=en.
  7. Leyva M, Rodríguez Y, Rodríguez R, Niño S. Mecanismos moleculares de la secreción de insulina.  Correo Científico Médico (CCM) 2020; 24(2)

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Los flavonoides, clasificación e impacto en la salud

El término flavonoide hace referencia a un grupo bastante diverso de compuestos químicos presentes en los vegetales. Uno de los primeros nombres con que fueron reconocidos fue vitamina C2. Esto se debió a que su descubridor, Albert Szent-György (1930), quién también había participado del descubrimiento de la vitamina C, detectó que estas nuevas sustancias, presentaban propiedades antioxidantes similares a aquellas de la vitamina C. Sin embargo, con el tiempo se demostró que, a pesar de estas similitudes, los flavonoides no presentaban relación alguna con la vitamina. Aunque en algún momento también fueron denominados vitamina P, por mejorar la permeabilidad del epitelio cardiovascular, para finales de 1950, el nombre más comúnmente empleado y aceptado para denominarlos era flavonoide. El origen del término deriva del latín flavus, que en español significa amarillo, en honor a que la primera tonalidad aislada de estos pigmentos fue el amarillo.

En la actualidad, el conocimiento en relación con los flavonoides ha crecido exponencialmente a la par con el número de efectos potencialmente beneficiosos para las personas. No obstante, persiste, en la mayoría de los profesionales de la salud, cierta confusión en relación con cuál es su estructura y a qué se considera realmente un flavonoide. Aunque todos los flavonoides son considerados pigmentos naturales, no todos los pigmentos encontrados en las plantas son flavonoides. Revisemos brevemente algunos conceptos clave.

 

Clasificación y estructura química

Los flavonoides son compuestos que presentan una estructura fenólica básica [Nota. Estructura fenólica significa que presenta uno o más anillos de tipo fenol, en su composición]. De hecho, los flavonoides son un tipo de polifenol (figura 1). Ahora bien, debe quedar claro que no todos los polifenoles son flavonoides, por ejemplo, el resveratrol es un compuesto polifenólico, sin embargo, no es considerado un flavonoide. El resveratrol pertenece a un grupo denominado estilbenos (1).

Figura 1. Clasificación de los flavonoides

 

Los flavonoides naturales presentan al menos 3 anillos hidroxilos fenólicos y se encuentran generalmente combinados con azúcares en forma de glicósidos, aunque también pueden encontrarse de forma libre [Nota. Los glicósidos o glucósidos son compuestos formados por un azúcar y otra molécula cualquiera mediante un enlace no digerible por el intestino humano. No debe confundirse el término glicósido o glucósido, con glúcido. Los glúcidos son también denominados azúcares, hidratos de carbono o sacáridos]. En la tabla 1 se puede apreciar los subtipos de flavonoides más conocidos, características y ejemplos (2,3). También deberían ser considerados dentro de los subtipos de flavonoides a los biflavonoides, dihidroflavonoles, flavanol y flavandioles, no obstante, su concentración es muy baja en las plantas, por tanto, su impacto en la modulación de algún proceso en el cuerpo humano todavía está en investigación.

 

Tabla 1. Algunos de los subtipos de flavonoides más conocidos.

Nombre Características Ejemplos
Flavonas Uno de los más comunes y abundantes. Se ubica en las zonas amarillas de la planta. Tangeritina, luteolina, apigenina
Flavonoles Uno de los más comunes y abundantes. Se ubica en las zonas amarillas de la planta. Kaemferol, quercitina, rutina, silimarina (flavonolignano)
Flavanonas

 

Su concentración es muy escasa. Se encuentran bajo la forma glucosídica. Naringina, hesperidina, eriodictiol
Chalconas Las chalconas son poco abundantes, pues se convierten en flavanonas en medio ácido.
Dihidrochalconas o auronas Son los pigmentos amarillo-dorados que existen en ciertas flores Sulfuretina, leptosidina
Antocianidina

 

Las más conocidas son las antocianinas (su forma glucósida). Después de la clorofila, son el grupo más importante de pigmentos en las plantas visibles al ojo humano y proporcionan el color malva, rosa, violeta y azulado a numerosas flores y frutos, como por ejemplo la fresa, el clavel, las manzanas y la uva constituyen hasta aproximadamente 30 % de su masa seca. Apigenidina, luteolinidina, cianidina
Isoflavonoides

 

Las isoflavonas son todas coloreadas y están mucho menos distribuidas en las plantas. De hecho están casi restringidas a las leguminosas y se destacan por su papel como fitoalexinas (antibiótico natural). Genisteína, diadzeina, orobol
Protoantocianidinas o taninos condensados Son polímeros de antocianidina. Es común encontrarlos en la madera de las plantas leñosas.
Flavanonoles Su concentración es muy escasa y son los menos conocidos.

Fuente: Modificado de referencia 2 y 3

 

Fuentes alimentarias

Los flavonoides, así como todos los otros tipos de polifenoles son responsables de otorgarle color a los vegetales. Esto quiere decir que mientras más intenso sea el color del vegetal, mayor será la concentración de flavonoides en el producto.

Los flavonoides se encuentran distribuidos en frutas, verduras, semillas y flores. También puede ser encontrados el té verde, te negro, soja y en la cerveza y el vino, aunque en estos dos últimos casos, los flavonoides provienen en mayor proporción de la materia prima utilizada para elaborar estas bebidas y secundariamente debido al proceso de fermentación. Algunas plantas como la ginko biloba, la pasiflora, el cardo mariano o las hojas de trigo sarraceno, entre otras presentan concentraciones significativamente altas de flavonoides, sin embargo, su uso está principalmente destinado a la producción de nutracéuticos (4)

*****************************************
Para más información, click sobre la foto

*****************************

Las uvas contienen cantidades significativamente altas de proantocianidinas y ácido elágico tanto en la piel como en las semillas. Su concentración dependerá, entre otros factores, del tipo de uva (las más oscuras contienen mayor concentración), del clima, del terreno y de las prácticas de cultivo. Los alimentos cítricos contienen cantidades variadas de flavonoides. La quercetina, de color amarillo-verdoso- se encuentra en manzanas, brócoli, cerezas, uvas, repollo rojo y cebolla. La hesperidina se encuentra en el hollejo de las naranjas y limones. La narangina se encuentra la naranja, limón y toronja; mientras que el limoeno ha sido aislado en el limón y la lima.  La soja y sus derivados (tofu, tempeh, bebida, texturizada, harina, miso) contiene cantidades variables de genisteína y diadzeina. Las verduras en general contienen cantidades importantes de ácido elágico. Las cerezas son ricas en antocianidinas, unos pigmentos de color rojo y rojo-azulado. El té verde es rico en catequinas; mientras que el poro (puerro), brócoli, rábano y remolacha roja son ricos en kaemferol. La media de consumo diaria de flavonoides se ha establecido alrededor de 23 mg/d a base predominantemente de quercetina (5).  Sin embargo, es un valor que no refleja necesariamente un consumo regional. En países con un alto consumo de vino y té, la ingesta de flavonoides bajo la forma de quercetina se eleva considerablemente, mientras que, en países con un consumo bajo de vino, té o frutas, la cantidad ingerida de quercetina cae significativamente.

 

Efectos del consumo de flavonoides

Aunque los flavonoides se conocen hace casi 100 años, el interés de la ciencia ha crecido exponencialmente en las últimas 2 décadas. Sus efectos están asociados con el control y la modulación de 2 estados en particular: el estado prooxidante endógeno y el desarrollo de inflamación. A partir de estos dos ejes se ha construido toda la evidencia disponible. De hecho, existe información abundante sobre el efecto de los flavonoides sobre una amplia variedad de situaciones clínicas, no obstante, todas están relacionadas de una manera u otra con los dos ejes propuestos.

Efecto antioxidante de los flavonoides

Debido a su estructura química particular, los flavonoides presentan una actividad antioxidante excepcional. Los flavonoides son capaces de inhibir enzimas responsables de la generación de radicales libres, como por ejemplo: la lipooxigena, la ciclooxigenasa, la mieloperoxidasa, la NADPH oxidasa, la xantina oxidasa o la fosfolipasa A2. Los flavonoles (quercetina y rutina) así como las catequinas han demostrados un poder inhibitorio significativo en estudios in vitro y en animales. Los flavonoides también son capaces de quelar especies reactivas de oxígeno (ROS) como el radical superóxido y el radical hidroxilo. Las antociadininas, los flavonoles (quercetina y rutina) y las catequinas son potentes secuestradores de ROS. Los flavonoides son secuestradores eficientes de metales de transición como hierro y cobre. De esta manera logran disminuir su efecto prooxidante en el organismo. Finalmente, los flavonoides en general han mostrado un efecto potente para incrementar la concentración de catalasa y superóxido dismutasa, enzimas fundamentales en el sistema antioxidante humano (3) [Nota. Vale la pena tomar en cuenta esta propiedad para cuando se pretenda combinar alimentos ricos en hierro no hem con alimentos ricos en flavonoides]

 Efecto antiinflamatorio de los flavonoides

La cascada de inflamación incluye una serie de procesos orgánicos bien organizados que involucran células y sustancias químicas. Las membranas celulares y lisosomales poseen una serie de proteínas que tienen como función detectar potenciales enemigos. Estas proteínas son conocidas de manera genérica como receptores de reconocimiento de patrones intracelulares (PRR) y de todos los PRR existentes, los más estudiados son los receptores tipo toll (TLR). Por el lado de los potenciales enemigos, encontramos los patrones moleculares típicos de los patógenos (PAMP) y sustancias químicas consideradas peligrosas (DAMP). Cuando un TLR entra en contacto con un PAMP o un DAMP se inicia una cascada de eventos que tienen como objetivo activar vías de señalización inflamatoria como el factor nuclear kappa B (NF-κB), la proteína activadora 1 (AP-1) y vías del factor regulador del interferón (IRF). Este proceso estimulará la síntesis de moléculas proinflamatorias como el óxido nítrico (NO), las prostaglandinas E2 (PGE2), el factor de necrosis tumoral alfa (TNF-alfa), las interlecuinas 1 y 6, así también enzimas, tales como la ciclooxigenasa 2 (COX2).  En el mismo sentido, existe otro mecanismo que puede promover el estado inflamatorio y está relacionado con unos complejos proteicos intracelulares denominados inflamasomas. Su activación se da en dos etapas: a) la señal de cebado y b) la señal de disparo. La señal de cebado está inducida por la activación del NF-κB, del AP-1 y IRF, pero no es suficiente por sí sola, por lo que se requiere la presencia de moléculas disparadoras como procaspasa-1, procaspasa-11, entre otras. La activación del inflamasoma desencadena una super inflamación que puede llevar a la célula a la autofagia y su destrucción completa.

Los flavonoides han demostrado tener efecto inhibitorio sobre la producción de mediadores inflamatorios como NO, PGE2, COX2, TNF-alfa, IL1, IL6. Además, han mostrado tener efecto supresor sobre las vías de señalización asociadas con los TLR, NF-κB, del AP-1 y IRF y más recientemente se ha podido demostrar su efecto inhibitorio sobre la activación de las inflamasomas. La quercetina ha mostrado ser un potente regulador hacia debajo de la actividad de las inflamasomas a través de diferentes mecanismos moleculares. La luteolina ha mostrado reducir significativamente la concentración de ROS, lo cual, reduce la influencia directa sobre la activación de los inflamasomas. El mismo efecto ha sido comprobado en el caso de la apigenina presente de manera abundante en las hojas de manzanilla y de los epigalatocatequinas presentes en las hojas de té (6).

 

Como se ha citado, el efecto protector de los flavonoides gira en torno a dos elementos: control en la producción de radicales libres y modulación de la inflamación. Cuando uno de estos procesos es controlado o, mejor aún los dos, el efecto positivo de los flavonoides sobre la salud de las personas es significativamente alto. La evidencia ha demostrado que el consumo de flavonoides, a través de una dieta rica en frutas y vegetales de color intenso, puede modular favorablemente la respuesta inmunológica (7); puede prevenir la aparición del cáncer (8) o reducir considerablemente el estrés oxidativo propio del mismo (9); puede prevenir la aparición de enfermedades cardiovasculares (10); e incluso tiene un impacto positivo sobre las características del microbioma (11).

 

Si quieres aprender más sobre cómo aplicar esta información y otras más en el tratamiento nutricional de tus pacientes, participa de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFSIONAL EN NUTRICIÓN CLÍNICA. Haz click, AQUÍ, para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Cartaya, O., and Inés Reynaldo. “Flavonoides: características químicas y aplicaciones.” Cultivos Tropicales, vol. 22, no. 2, Apr.-June 2001, pp. 5+. Gale Academic oneFile, gale.com/apps/doc/A146790746/AONE?u=anon~6f2bdeab&sid=googleScholar&xid=9a3bc172. Accessed 14 Oct. 2022.
  2. Pérez Trueba Gilberto. Los flavonoides: antioxidantes o prooxidantes. Rev Cubana Invest bioméd  [Internet]. 2003  Mar [citado  2022  Oct  12] ;  22( 1 ). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002003000100007&lng=es.
  3. Tránsito M. Flavonoides. Vol. 21. Núm. 4. 108-113): 2002. Disponible en: https://www.elsevier.es/es-revista-offarm-4-articulo-flavonoides-13028951
  4. Martínez S, Gonzales, J, Culebras J, Tuñon M. Los flavonoides: propiedades y acciones antioxidantes. Nutr. Hosp. (2002) XVII (6) 271-278
  5. Yi YS. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses. Mol Nutr Food Res. 2018 Jul;62(13):e1800147. doi: 10.1002/mnfr.201800147. Epub 2018 Jun 19. PMID: 29774640.
  6. Peluso I, Miglio C, Morabito G, Ioannone F, Serafini M. Flavonoids and immune function in human: a systematic review. Crit Rev Food Sci Nutr. 2015;55(3):383-95. doi: 10.1080/10408398.2012.656770. PMID: 24915384.
  7. Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Kumar M, Aggarwal V, Sandhu SS. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules. 2019 May 6;9(5):174. doi: 10.3390/biom9050174. PMID: 31064104; PMCID: PMC6572624.
  8. Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules. 2020 Nov 30;25(23):5628. doi: 10.3390/molecules25235628. PMID: 33265939; PMCID: PMC7729519.
  9. Micek A, Godos J, Del Rio D, Galvano F, Grosso G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol Nutr Food Res. 2021 Mar;65(6):e2001019. doi: 10.1002/mnfr.202001019. Epub 2021 Feb 25. PMID: 33559970.
  10. Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr. 2017 Jan;105(1):10-22. doi: 10.3945/ajcn.116.136051. Epub 2016 Nov 23. PMID: 27881391; PMCID: PMC5183723.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Tratamiento anticoagulante y consumo de fuentes alimentarias de vitamina K

El consumo de fuentes alimentarias de vitamina K durante la terapia anticoagulante es un tema controversial que a veces es difícil de afrontar por parte del nutriólogo/nutricionista/dietista-nutricionista (dependiendo de la denominación del país). Las guías son, en general, muy escuetas cuando se trata de abordar el tema y generan más dudas que certezas al respecto. El paciente experimenta cierta ansiedad por mensajes confusos, por decirlo menos, que recibe por parte del personal sanitario. A continuación, analizamos brevemente el tema.

¿Cómo se lleva a cabo el proceso de coagulación sanguínea?

La coagulación sanguínea es un proceso dinámico que involucra células y proteínas. Su objetivo es generar trombina, enzima responsable de la conversión del fibrinógeno en fibrina (proteína que participa en la formación de coágulos para detener el sangrado). Ahora bien, este proceso es en extremo complejo porque integra varios sistemas a la vez: el vascular (la célula dañada inicia la cascada de coagulación), el plaquetario (las plaquetas son activadas y movilizadas para adherirse al área dañada), el de coagulación (el proceso mismo) y el fibrinolítico (responsable de la degradación de fibrina cuando ya no es necesaria). Entre los años de 1960 y 1970 se propuso la Cascada de coagulación para explicar el proceso, no obstante, este modelo no era capaz de explicar por si solo todos los factores participantes. A principios de este siglo, se propuso el modelo celular (figura 1). Dada la amplitud del tema, solo abordaremos de modo superficial la descripción de qué son y qué hacen los factores de coagulación para entender el papel de la vitamina K en este contexto.

 

Figura 1. Cascada clásica de coagulación

 

Los factores de coagulación son cimógenos (enzimas inactivas) que deben ser activados (gracias a la pérdida de una o más uniones péptidicas) en un proceso secuencial. Algunos de estos factores fueron nombrados utilizando números romanos, sin embargo, no todos emplean esta nomenclatura. Los factores de coagulación se pueden agrupar en 5 categorías (1):

 

  • Factores de contacto. Se encuentran en la membrana de células dañadas y son responsables del inicio de la cascada de coagulación.

 

  • Factores dependientes de vitamina K. Son proteínas sintetizadas en el hígado que contienen un extremo rico en fragmentos de ácido gamma glutámico que son colocados allí por acción de la enzima glutamato-carboxilasa. Por esta razón, en situaciones de déficit de vitamina K o en los tratamientos anticoagulantes con antagonistas de la vitamina K estos factores no poseen estos residuos, por tanto, no son funcionales.

 

  • Cofactores. Son moléculas que aceleran la velocidad de reacción. Entre estos se encuentran los QAPM, los factores V, VIII, la proteína S, la trombomodulina y el factor tisular.

 

  • Cimógenos o sustratos. Son proteínas inactivas que en su mayoría se transforman en proteasas tipo serina. El factor XIII y el fibronógeno son excepciones porque sus formas activas FXIIIa y fibrina, respectivamente no cumplen funciones catalíticas (rompen otras moléculas) como la mayoría.

 

  • Inhibidores. La mayoría pertenecen a la superfamilia de serpinas o inhibidores de las proteasas de serina. Existen otros inhibidores no serpínicos, sin embargo cumplen roles similares, inhibir la coagulación.

 

Tabla 1. Factores de coagulación

Categoría Factor Función
Factores de contacto Factor XI En su forma activada es el activador del FIX
Factor XII Iniciador de la vía intrínseca
Precalicreína Precursor de la calicreína
Quiminógenos de alto peso molecular (QAPM) Cofactores en la activación de la precalicreina FXI y FXII
Factores dependientes de vitamina K Factor II (protrombina) Precursor inactivo de la trombina
Factor VII Junto al Factor Tisular inicia la vía extrínseca
Factor IX En su forma activa es la enzima del complejo tenasa intrínseco
Factor X En su forma activa es la enzima del complejo protrombinasa
Proteína C En su forma activa inactiva al FVa y FVIIIa
Proteína S Cofactor de la PCa
Proteína Z Incrementa la inhibición del FXa por el inhibidor de la Proteína Z
Cofactores Factor V Cofactor del complejo protrombinasa
Factor VIII Cofactor del complejo tenasa intrínseco
Trombomodulina Cofactor de la trombina
Factor tisular Inhibe la vía extrínseca al unirse al FVIIIa
Cimógenos o sustratos Fibrinógeno Precursor de fibrina
Factor XIII Transaminasa que entrecruza la fibrina
Inhibidores serpínicos Antitrombina III Serpina que inhibe a la trombina y a los factores VIIa, IXa, Xa, XIa y calicreína
Cofactor II de la heparina Serpina que inhibe a trombina
Inhibidor de la Proteína C Serpina que inhibe PCa, trombina, calicreína, FXIa, FXIIa y al componente C1
Inhibidor de la proteína Z Serpina que inhibe FXa y FXIa
Otros inhibidores no serpínicos TFPI o inhibidor de la vía del factor tisular Inhibidor tipo Kunitz de los complejos TF/FVIIa/FXa y del PS/FXa

Nota. La letra “a” después de una sigla en mayúscula, indica la forma activa.

Fuente: Referencia 1


*****************************************
Para más información, click sobre la foto

*****************************

¿Cuántos tipos de anticoagulantes están disponibles en la actualidad?

Tradicionalmente, el manejo de la anticoagulación podía darse de manera parenteral empleando heparina o de manera oral empleando Warfarina. Las dificultades asociadas con el manejo de este último medicamento, ha impulsado la investigación para el desarrollo de nuevos productos. En la tabla 2, se puede apreciar la lista de anticoagulantes disponibles en la actualidad. Nótese que la Warfarina y el acenocumarol son los únicos antagonistas de vitamina K en el mercado (2).

 

Tabla 2. Tipos de anticoagulantes comercialmente disponibles

Categoría Anticoagulante
Antagonistas de vitamina K Warfarina, acenocumarol
Heparinas (Inhibidor de FIXa, FXa, FXIa y FXIIa.) Heparina no fraccionada
Enoxaparina
Daltaparina
Tinzaparina
Inhibidor del Factor Xa Fondaparinux
Rivaroxaban
Apixaban
Inhibidor directo de la trombina Dabigatran
Bivalirudin
Argatroban
Fibrinolíticos Alteplase
Reteplase
Tenecteplase
Uroquinasa

Fuente:Referencia 2

 

¿Cuánta vitamina K necesitamos y dónde la encontramos?

La vitamina K puede ser encontrada en dos formas: filoquinonas (plantas y aceites vegetales) y menaquinonas (a nivel intestinal). La ingesta recomendada varía entre 90 y 120 ug/d (tabla 3)(3). Estos valores están influenciados por la edad, sexo, estado fisiológico, actividad física, crecimiento, lactación, gestación y estado de salud.

 

Tabla 3. Necesidades nutricionales de vitamina K según grupo etario

Grupo etario IA (mcg/d)
Menores de 6 meses 2.0
7-12 meses 2.5
1 a 3 años 30
4 a 8 años 55
9 a 13 años 60
14 a 18 años 75
Hombres adultos mayores de 19 años 120
Mujeres adultas mayores de 19 años 90
Adolescentes embarazadas o en periodo de lactancia 75
Mujeres embarazadas o en periodo de lactancia 90

Fuente: Referencia 3

 

Los vegetales de hoja verde oscura presentan los niveles más altos de vitamina K y pueden llegar a cubrir entre el 40-50% de las necesidades diarias. En la tabla 4, se recogen los valores por 100 g de alimento de los vegetales normalmente restringidos en pacientes con tratamiento anticoagulante. En el primer grupo se ubican los vegetales con alto contenido de vitamina K. Por ejemplo, 15 g de acelga cruda aportan 124.5 mcg de vitamina K. Esta cantidad es suficiente para cubrir las necesidades nutricionales de un adulto. Lo mismo sucedería con el perejil porque 5 g de perejil picado nos proporcionan aproximadamente 82 mcg de vitamina K y casi cubre toda la necesidad diaria. No obstante, para el caso del brócoli, la lechuga o repollo las cantidades consumidas del alimento deberían ser superiores a los 100 g para generar un consumo elevado de la vitamina.

,

Tabla 4. Fuentes alimentarias más importantes de vitamina K

Alimento USDA

(mcg/100g)

Acelga cruda 830
Acelga cocida 327.3
Berro crudo 250
Col rizada 817
Coliflor cocida 406
Espinaca cruda 482.9
Espinaca cocida 493.6
Mostaza cruda 257.5
Perejil 1640
Lechuga suave 102.3
Lechuga rizada 24.1
Lechuga americana 126.3
Brócoli crudo 101.6
Brócoli cocido 141.1
Cebollín 207
Repollo crudo 76
Repollo cocido 108.7
Arúgula cruda 108.6
Aceite de soja 183.9
Aceite de algodón 24.7
Aceite de canola 71.3
Aceite de girasol 5.4
Aceite de coco 0.5
Aceite de maíz 1.9
Aceite de oliva 60.2
Mantequilla con sal 7
Margarina 102
Palta 21

Fuente: Referencia 1

 

 ¿Qué impacto tiene el consumo de fuentes alimentarias de vitamina K sobre la terapia anticoagulante?

En principio es necesario precisar que el impacto del consumo de fuentes de vitamina K solo está relacionado con el uso de Warfarina. No existe información disponible relacionada con los otros medicamentos, de hecho, su mecanismo de acción no está relacionado con la vitamina K. Por otro lado, tampoco existe evidencia clara o contundente sobre la cantidad exacta de vitamina K que debe ser consumida por el paciente a partir de fuentes alimentarias. Las guías disponibles son muy genéricas en relación con el tema. Sin embargo, sí existe evidencia de que el consumo muy bajo o muy alto de vitamina K puede afectar negativamente el efecto de la Warfarina. Por esa razón, la recomendación más aceptada es que el paciente cubra sus necesidades nutricionales y evite hacer cambios bruscos en el consumo de fuentes alimentarias de vitamina K a lo largo del tiempo. La educación nutricional como parte de la consulta es fundamental en estos casos. El paciente debe aprender a identificar las fuentes alimentarias de vitamina K y entender que no es necesario efectuar restricción alguna, no obstante, evitar que durante un mismo día se consuma más de la cantidad requerida de vitamina K. Es importante, además, el control permanente de los parámetros de coagulación porque de esa manera también se puede titular la cantidad exacta de vegetales que puede ser consumida con seguridad por el paciente.

Finalmente, también debemos poner atención al impacto que pueden tener otros alimentos sobre la coagulación sanguínea o la actividad misma de la Warfarina. El consumo diario de ajo, por ejemplo, tiene un efecto anticoagulante plenamente demostrado, así como también el acido eicosapentanoico (EPA). El jugo de uva puede afectar la actividad del citrocromo P450 y afectar el metabolismo de la Warfarina. El exceso de vitamina E puede afectar la oxidación de vitamina K. La ginko biloba, el mosto de San Juan, el té negro y verde, el juego de cranberry y otros elementos más también puede afectar vía la formación de tromboxanos el sistema de anticoagulación, no obstante, de ellos hablaremos en otra entrega.

Si quieres saber más sobre nutrición pediátrica, sigue nuestro curso de Actualización en nutrición pediátrica. Haz click, AQUÍ,  para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Minighin Elaine C., Bragança Kellen P., Anastácio Lucilene R.. Warfarin drug interaction with vitamin K and other foodstuffs. chil. nutr.  [Internet]. 2020  Jun [citado  2022  Jun  23] ;  47( 3 ): 470-477. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182020000300470&lng=es.  http://dx.doi.org/10.4067/S0717-75182020000300470.
  2. Harter K, Levine M, Henderson SO. Anticoagulation drug therapy: a review. West J Emerg Med. 2015 Jan;16(1):11-7. doi: 10.5811/westjem.2014.12.22933. Epub 2015 Jan 12. PMID: 25671002; PMCID: PMC4307693.
  3. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc . Washington D.C., National Academies Press (US); 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222310/

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Bebidas vegetales comercialmente disponibles ¿Qué tan nutritivas son?

Las bebidas vegetales comercialmente disponibles o mal llamadas “leches” son productos con apariencia similar a aquella de la leche de vaca, no obstante, elaboradas a partir de semillas, oleaginosas o cereales. Son consideradas “saludables” y su consumo se ha incrementado considerablemente en los últimos años. En prácticamente todos los países occidentales se ha podido percibir un incremento sostenido en la oferta de estas bebidas. Es tanta la penetración en el mercado y en la percepción positiva del consumidor que su uso dejó de ser un evento circunstancial, mediático o una simple moda. ¿Qué tan nutritivas son? Es una pregunta recurrente entre los pacientes y a juzgar por todo lo que se dice sobre ellas, es nuestra obligación tener una respuesta clara y concreta al respecto. Partiendo de las características bioquímico-nutricionales de la leche de vaca, analicemos en las siguientes líneas si su parecido con las bebidas vegetales va más allá del color.

 

La leche de vaca

Por definición, el único alimento que puede ser considerado como leche es aquel que se extrae de las glándulas mamarias de animales (1), por lo tanto, las llamadas “leche de arroz”, “leche de soya”, “leche de almendras” “leche de ajonjolí” y cualquier licuado parecido no debe ser considerado por motivo alguno leche (tabla 1).

 

Tabla 1. Términos lecheros oficiales según Codex Alimentarius

TERMINO LECHERO DEFINICIÓN
Leche Es la secreción mamaria normal de animales lecheros obtenida mediante uno o más ordeños sin ningún tipo de adición o extracción, destinada al consumo en forma de leche líquida o a elaboración ulterior.
Producto lácteo Es un producto obtenido mediante cualquier elaboración de la leche, que puede contener aditivos alimentarios y otros ingredientes funcionalmente necesarios para la elaboración.
Producto lácteo compuesto Es un producto en el cual la leche, productos lácteos o los constituyentes de la leche son una parte esencial en términos cuantitativos en el producto final tal como se consume, siempre y cuando los constituyentes no derivados de la leche no estén destinados a sustituir totalmente o en parte a cualquiera de los constituyentes de la leche.
Producto lácteo reconstituido Es el producto lácteo resultante de la adición de agua a la forma deshidratada o concentrada del producto en la cantidad necesaria para restablecer la proporción apropiada del agua respecto del extracto seco.
Producto lácteo recombinado Es el producto resultante de la combinación de materia grasa de la leche y del extracto seco magro de la leche en sus formas conservadas, con o sin la adición de agua para obtener la composición apropiada del producto lácteo.

Fuente: Referencia (1)

 

Desde el punto de vista nutricional, la leche de vaca de destaca por 05 elementos: i) su fracción proteica (incluida la proteina de la membrana del glóbulo de grasa o MFGM); ii) su fracción lipídica, iii) su contenido de lactosa; iv) su contenido de calcio; y v) los componentes bioactivos de la MFGM. Revisemos brevemente cada uno de ellos.

Proteína. La leche de vaca presenta un contenido de proteína que fluctúa entre los 3.5 – 4 g/100ml. El 78% de esas proteínas corresponden a las 4 fracciones de caseína: α, β, κ, γ; mientras que el 20% corresponde a la proteína del suero (rica en leucina). Alrededor del 2% restante corresponde a las proteínas de la membrana del glóbulo de grasa (MFGM) (2). Además, la digestión de la proteína de la leche de vaca a nivel intestinal origina diversos péptidos bioactivos con efectos inmunomoduladores, antimicrobianos, antitumorales y de protección del sistema cardiovascular entre los que podemos citar: α-casomorfina, casoquinina, casoxinas, caseinomacropéptidos, alfa y beta lactorfina, lactoferricina, lactoperoxidasas (3). La calidad nutricional de la proteína de la leche de vaca es alta. No solo presenta un aminograma perfecto (100%), sino que además su digestibilidad es casi completa (95% de un máximo de 100%) (4) (Tabla 2).

 

Tabla 2. Valor nutricional de según grupo alimentario.

Grupo alimentario Escore

%

PDCAAS

%

Primer aminoácido limitante
Lácteos 100 95 No tiene
Huevo 100 97 No tiene
Carnes (aves, res, pescado, mariscos, cerdos 100 94 No tiene

Fuente: Modificado de Referencia 4.

 

Lípidos. El contenido de lípidos de la leche de vaca fluctúa entre 3.5 – 4.5 g/100ml. La grasa de la leche bovina es considerada como una de las grasas de origen natural más complejas que existen porque se ha demostrado que contiene más de 400 diferentes tipos de ácidos grasos que, aunque en concentraciones menores al 0.1%, presentan propiedades fisiológicas interesantes. El 98% de los lípidos de la leche de vaca se encuentran bajo la forma de triglicéridos (glicerol más 3 ácidos grasos). El 2% restante está integrado por ácidos grasos libres saturados (AGS) e insaturados (AGI) con diferente longitud de cadena, colesterol, vitaminas liposolubles y lípidos estructurales (fosfatidilcolina, fosfatidiletanolamina, fosfatidilinositol, y fosfatidilserina y esfingomielina) (5). No existen pruebas que el consumo de leche de vaca incremente los niveles de colesterol, por el contrario, la presencia de factores protectores como el ácido linoleico conjugado (C18:2 cis-9 trans-11) son reconocidos por su efecto positivo sobre control del colesterol en sangre (2). El contenido promedio de colesterol de la leche de vaca es de aproximadamente 10-15 mg/dl.


*****************************************
Para más información, click sobre la foto

*****************************

Carbohidrato. La lactosa es el carbohidrato más importante de la leche de vaca. La leche extraída de la glándula mamaria de un mamífero es la única fuente natural de lactosa en la naturaleza. La lactosa es un disacárido, es decir, una azúcar formada por dos azúcares más pequeñas (la glucosa y la galactosa). La lactosa es particularmente importante porque el rol que cumple en la absorción del calcio dietario.  La lactosa también tiene un efecto positivo sobre la integridad del cerebro. Cuando la lactosa es digerida a nivel intestinal, la galactosa liberada es incorporada en la membrana celular de los cerebrósidos.

Aporte de calcio. El 99% del calcio de la leche de vaca se encuentra en su fracción no lipídica. El 65% se encuentra bajo la forma micelar (20% fosfato de calcio unido a caseína y 45% unido a fosfato). El 35% se encuentra en forma acuosa (25% unido a fosfato y 23% libre). De todas las formas de calcio, la fracción libre es la que presenta absorción más baja (figura 1). Aunque, la tasa final de absorción de calcio estará influenciada por el equilibrio existente entre los factores mejoradores de la absorción y los inhibidores. Se consideran factores mejoradores de la absorción de calcio a los péptidos, la acidez, la presencia de lactosa y la concentración de vitamina D. Por otro lado, se consideran factores inhibidores de la absorción de vitamina D a los: oxalatos, fitatos, ácidos urónicos, polifenoles, AGS de cadena larga y la presencia de grasa no absorbida a nivel intestinal (6,7).

 

Figura 1. Distribución y tasa de absorción del calcio de la leche

 

 

Bebidas vegetales comercialmente disponibles

Las bebidas vegetales son jugos con un alto contenido de agua preparados a base de leguminosas (por ejemplo: arverja o soja), semillas (por ejemplo: linaza o alpiste), oleaginosas (por ejemplo: almendras o avellanas) y cereales (por ejemplo: arroz) entre algunos de los grupos alimentarios más empleados. En el Perú, existe una variedad relativamente alta de estos productos con precios igualmente variables. Después de revisar la oferta disponible en supermercados y tiendas especializadas, hemos seleccionados los productos más frecuentemente encontrados. Cuando varias marcas con el mismo producto presentaban la misma composición nutricional y precio, solo se ha seleccionado una de las marcas. Veamos a continuación, cuál es su aporte nutricional.

Energía. El aporte de energía de las bebidas vegetales comercialmente disponibles fluctúa entre 20-50 kcal. El contenido de energía adicional dependerá principalmente de la presencia de azúcar añadida. En muy pocos casos, está en función de un aporte adicional de proteína.

Proteínas. El aporte de proteína es significativamente bajo en prácticamente todas las bebidas disponibles. Incluso en algunas marcas el aporte de proteína es cero gramos. En términos de calidad nutricional, las proteínas vegetales (exceptuando a la soja) presentan una aminograma incompleto (menor al 90% en todos los casos) y una digestibilidad un 30-50% menor que aquella que presentan las proteínas de origen animal. Es verdad que el procesamiento mejora la digestibilidad de la proteína, sin embargo, esta mejora aplica solo cuando se emplea aislado de proteína (esto involucra un proceso químico más complejo y no simplemente moler el grano) (tabla 3).

 

Tabla 3. Valor nutricional de según grupo alimentario.

Grupo alimentario Escore

%

PDCAAS

%

Primer aminoácido limitante
Cereales y derivados 68 58 Lisina
Frutas 75 64 Lisina
Verduras 88 73 Histidina
Menestras 95-100 < 80% Azufrados
Tubérculos 89 74 Histidina y azufrados

Fuente: Modificado de Referencia 4.

 

Lípidos. Contrario a lo que se podría pensar, incluso en el caso de las bebidas obtenidas a partir de oleaginosas como el coco o la almendra, el aporte de grasa es bajo. Difícilmente supera los 3g/100ml, siendo la tendencia que se encuentre por debajo de 2.0g/100ml. En vista de aporte reducido en grasa es poco lo que se puede comentar sobre su calidad. No obstante, vale la pena advertir que al leer la lista de ingredientes identificamos que la bebida de soya tenía aceite de soya como ingrediente.

 Carbohidratos. El aporte de carbohidratos está directamente influenciado por la presencia de azúcar añadida. Por lo general, el aporte es menor a 3.0g/dl y superior a este valor cuando el producto presenta azúcar adicional. Por ser un producto vegetal, no contiene lactosa.

 Calcio. El aporte promedio de calcio fluctúa entre 70-120 mg/100 ml. Por ser un producto vegetal, el calcio se presenta como una sal acuosa unida a ácido fosfórico, por tanto, el calcio de menor tasa de absorción.

  

Comparación entre las características bioquímico-nutricionales de la leche de vaca versus las bebidas vegetales comerciales

Después de revisar cuál es el aporte nutricional promedio tanto de la leche de vaca como de las bebidas vegetales analizadas, pasemos a compararlas (tabla 4).

Energía. El aporte de energía de la leche de vaca está alrededor de 65 kcal/100ml, lo cual es mayor al aporte de energía de la mayoría de las bebidas vegetales.

Proteína. El aporte de proteína de la leche de vaca es de 3.5 g/100 ml mientras que en el caso de las bebidas vegetales es prácticamente residual (salvo algunas excepciones). La proteína de la leche de vaca presenta un aminograma ideal, la proteína vegetal es incompleta. La proteína de la leche de vaca presenta una digestibilidad casi perfecta, sin embargo, la proteína vegetal es todo lo contrario. Además, considerando que la proteína es el nutriente más valioso en estos productos, decidimos calcular el costo de 1 g de proteína en cada uno de ellos. Encontramos que mientras que 1 g de proteína de alta calidad proveniente de la leche de vaca cuesta S/. 0.12 soles ($/. 0.10 dólares), un gramo de proteína de estas bebidas puede llegar a costar S/. 14.60 soles ($/. 3.89 dólares)

Lípidos. El aporte de lípidos de la leche de vaca está alrededor de 3.5g/100ml mientras que el aporte de las bebidas vegetales difícilmente supera los 2g/100ml. Aunque es verdad que la grasa vegetal es, por lo general, más saludable que la grasa animal, en los casos revisados no se puede defender o plantear un beneficio de salud en particular.

Carbohidratos. Mientras que la leche de vaca proporciona alrededor de 5g/100ml en base a lactosa (útil para la absorción del calcio), las bebidas vegetales presentan un contenido variado de carbohidratos que se incrementa cuando se le agrega azúcar.

Calcio. La leche de vaca aporta alrededor de 100 mg/100 ml de calcio, del tipo micelar con una tasa de absorción superior al 40%, las bebidas vegetales presentan una cantidad similar de  calcio, entre 70-120 mg/100ml, pero con una tasa de absorción significativamente baja.

 

Tabla 4. Comparación de las características nutricionales y costo de las bebidas vegetales comercialmente disponibles y la leche de vaca 

Marca Fuente de la proteína Aporte nutricional por 100 ml Costo por litro en soles/dólares* Costo por 1 g de proteína en soles/dólares
Energía (kcal) Prot (g) Lip (g) Cho (g) Calcio (mg)
Not Milk Arverja 46 1.6 3.3 1.8 129 16.90 (4.5) 1.05 (0.28)
Nature Heart Nuez de la india / Marañón Nuez de la india, marañón 26 0.0 2.0 2.0 SD 13.20 (3.52)*** 13.20 (3.52)
Nature Heart Almendra Almendra 22 1.0 2.0 1.0 SD 13.20 (3.52) 1.25 (0.33)
Nature Heart avena Avena 50 2.0 1.5 6.5** SD 13.20 (3.52) 0.62 (0.16)
Orasi Hazelnut Avellana 38 0.5 2.2 3.8 120 14.99 (3.97) 2.99 (0.79)
Orasí arroz Arroz 50 0.1 1.3 9.3 120 14.60 (3.89) 14.6 (3.89)
Bebida de coco Laive Coco 27 0.4 2.0 1.5 77 10.99 (2.9) 2.74 (0.73)
Bebida de soya de Laive Soya 31 2.0 1.0 3.0 97 6.70 (1.78) 0.34 (0.1)
Soy Vida de Gloria Soya 122 2.6 3.0 6.0** 87 3.88 (1.1) 0.14 (0.1)
Milkadamia Macadamia 25 0.4 1.5 2.9** 162 22.90 (6.10) 5.72 (1.52)
Leche de vaca Caseína/lactosuero 65 3.5 3.5 5 106 4.5 (1.2) 0.12 (0.1)

*Tipo de cambio: 3.75 soles por cada dólar. **Contiene azúcar añadido. ***Los envases de la marca Nature Heart son de 946 ml por lo que el costo ha sido prorrateado a 1 litro. SD: sin datos claros, solo consignaba un porcentaje.

 

En conclusión, las bebidas vegetales comercialmente disponibles son productos con un costo-beneficio nulo. Su proteína es cara y de mala calidad. No aportan una cantidad suficiente de grasa como para establecer un beneficio para la salud. Su carbohidrato es de absorción rápida (no hay fibra) y su impacto sobre la fisiología intestinal carece de valor agregado. Su aporte de calcio, aunque parecido a aquel de la leche, es de baja absorción. Alguien podría argumentar que pueden contribuir con el control del peso por ser bebidas con un aporte de energía bajo, sin embargo, dado el costo y su contenido de nutriente, igual sería beber agua.

A modo de nota de pie de página, debemos comentar lo siguiente. El presente análisis aplica también a las bebidas vegetales artesanales con algunas observaciones. Dado que el procesamiento casero es más rústico, la digestibilidad de la proteína vegetal en las bebidas artesanales es todavía más bajo que aquel de las bebidas comerciales. En relación con su aminonograma, el procesado casero no lo mejora. Respecto al aporte de energía, las bebidas artesanales presentan un aporte considerablemente mayor de calorías que aquel de las bebidas comerciales. Sin embargo, tomando en cuenta que su contenido de proteína es bajo y de mala calidad, este aporte alto de energía provendrá principalmente de grasa o carbohidratos y estos, a su vez, dependerán de la materia prima empleada.  De hecho, esto puede contribuir con la ganancia de peso, sin embargo, a base de la acumulación de grasa corporal.

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Norma General para el uso de términos lechero. CODEX STAN 206-1999.
  2. Norma Técnica Peruana. Leche y productos lácteos. Leche cruda. Requisitos. NTP 202.00. 2003
  3. García, C. Montiel, R. Borderas, T. Grasa y proteína de la leche de vaca: componentes, síntesis y modificación. Zootec. 63(R): 85-105. 2014.
  4. Baro L, Jimenez J, Martínez-Perez A, Bouza J. Péptidos y proteínas de la leche con propiedades funcionales. Ars Pharmaceutica, 42:3-4; 135-145, 2001
  5. Torrejón Claudia, Uauy Ricardo. Calidad de grasa, arterioesclerosis y enfermedad coronaria: efectos de los ácidos grasos saturados y ácidos grasos trans. Rev. méd. Chile  [Internet]. 2011  Jul [citado  2018  Oct  23] ;  139( 7 ): 924-931. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0034-98872011000700016&lng=es.  http://dx.doi.org/10.4067/S0034-98872011000700016.
  6. Rosado J. Intolerancia a la lactosa. Gac Med Mex. 2016;152 Suppl 1:67-73
  7. Fernández A, Sosa P, Setton D, et al. Calcio y nutrición [Internet].Buenos Aires: Sociedad Argentina de Pediatría; 2011 Jul [actualizado Jul 2011, citado 24 de octubre 2017 ]. Disponible en:http://www.sap.org.ar/docs/calcio.pdf

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
Abrir chat
1
Bienvenidos a IIDENUT
¿En qué puedo ayudarte?
AFÍLIATE