metilmercurio

La estandarización como estrategia de posicionamiento profesional de los nutriólogos, nutricionistas o dietista-nutricionista

Escribir y reflexionar sobre el posicionamiento profesional de los nutriólogos, nutricionistas o dietistas-nutricionistas (dependiendo de la denominación del país) es una tarea un tanto controversial, sobre todo cuando se hace desde el interior del problema, porque eso implica desnudar y poner sobre la mesa nuestras propias debilidades.

Aunque existe consenso sobre la necesidad de crecer individual y colectivamente, las opiniones -sobre cuánto nos hace falta crecer, en qué áreas debemos crecer o cuáles son los aspectos que deben ser fortalecidos- presentan demasiados matices. En este orden de ideas, es posible encontrar diferentes grupos de colegas. Por un lado, están aquellos que han conseguido cierto reconocimiento individual; aquellos que forman parte de un equipo de salud consolidado; aquellos que han asegurado un puesto de trabajo que, aunque rutinario, no presenta sobresaltos ni exigencias mayores. También están aquellos que han preferido dirigir su mirada hacia otros horizontes profesionales por no encontrar en la nutrición la respuesta que esperaban para su futuro. En la base del grupo, es decir, la mayoría, se ubican aquellos que diariamente buscan abrirse paso en un entorno que es hostil porque la posición del profesional de nutrición no es lo suficientemente valorada. [Nota. Debe precisarse que esta subvaloración no aplica a la ciencia de la nutrición]. Un congreso es la metáfora más cruda de esta historia. El glamur de un auditorio moderno, elegante y con unos pocos colegas disertantes y exitosos nos hace creer -o quizás olvidar por un momento- que el resto, la mayor parte, están lejos, lamentablemente, de algo que se pueda llamar éxito completo tanto personal, profesional como económicamente hablando.

En el área clínica, la estandarización y la bioquímica (esta última la abordaremos en una entrega posterior) son herramientas que están generando resultados verificables y replicables. La forma tradicional en que se ha llevado a cabo la atención nutricional está muy enfocada en la detección de problemas relacionados o con la ingesta o con el peso. En este contexto, la aplicación de una herramienta de cribado nutricional parece ser una estrategia lógica. Todos los cribados buscan cambios en la dieta y el peso, por tanto, los resultados de su aplicación serían suficientes para generar una intervención nutricional. No obstante, este accionar no solo limita nuestro trabajo, sino también es uno de los principales factores que frena nuestro crecimiento. Los cribados no detectan problemas, solo detectan riesgos. Al no detectar problemas hacen que nuestras intervenciones sean riesgosas o no contribuyan significativamente con la mejora del paciente. A la larga, la falta de resultados afecta la confianza del profesional y vuelve su trabajo prescindible.

Las metodologías -base de la estandarización – permiten obtener y analizar la información de un modo tal que se reduzca al máximo posible la pérdida de datos y a la vez se fortalezca la validez de los resultados. Las metodologías están compuestas de procedimientos racionales, los cuales, ordenados y sistematizados apropiadamente permiten alcanzar objetivos concretos. Varios procedimientos, aunque se desarrollen de manera ordenada, no constituyen una metodología; representan en el mejor de los casos un conjunto de actividades. Para que uno o más procedimientos construyan una metodología es necesario que cada uno de ellos aporte información útil que en el contexto de un análisis racional permita obtener resultados lógicos y congruentes con la realidad. De nada sirve saber la composición corporal, el nivel de actividad o la ingesta nutricional de un paciente si no podemos relacionar esta información ni dirigir nuestras acciones hacia objetivos específicos.

A continuación, describiremos algunas razones por las cuales es necesario estandarizar nuestros procedimientos (1).

  • La estandarización permite obtener resultados más precisos y comparables. Seguir una misma metodología hace posible comparar datos o lo más elemental de todo, permite que nos podamos comunicar de manera más segura entre nosotros mismos. No solo eso, la estandarización abre el camino a la discusión científica de nuestras decisiones y a apoyarnos entre nosotros frente a casos más complejos.
  • La estandarización permite establecer tiempos mínimos de atención. La falta de una metodología aceptada universalmente impide el establecimiento de un tiempo mínimo de atención. Todos los documentos en los que hemos participado sugieren un mínimo de 45 minutos. Lamentablemente, en muchos lugares el tiempo de atención puede ser tan escaso como 10 minutos por paciente, un vívido reflejo del valor que se le da a nuestro trabajo. Imaginen el número de puestos de trabajo que se podrían generar si logramos que universalmente se acepten 45 minutos. Si en un establecimiento, un colega debía atender 6 pacientes por hora, por tanto, 36 pacientes durante una jornada de 6 horas. Con este nuevo esquema, un colega solo podría atender como máximo 8 pacientes por jornada, por tanto, se necesitarían 3 colegas adicionales por lo menos para atender a los 28 pacientes restantes [Nota. Aunque parezca lejano, esto es una realidad en muchos países de Latinoamérica].
  • La estandarización permite establecer un instrumental mínimo de atención. Uno de los principales inconvenientes de la práctica clínica en Nutriología es la falta de equipamiento tanto en los consultorios como en el área de hospitalización. La adopción de una metodología regula actividades y la forma y el equipamiento necesario para llevarlas a cabo.
  • La estandarización permite establecer un sistema de mejoramiento de competencias profesionales. Una metodología estandarizada, sobre todo aquella basada en la bioquímica obligará a todos a actualizar su formación para afrontar el reto de llevar a cabo consultas nutricionales cada vez más especializadas.

 

Finalmente, aunque la descripción con la que inicia esta nota pareciera una crítica, en el fondo no lo es. La descripción inicial es una crónica inexorable de una realidad dura a la que nos hemos tenido que adaptar para poder sobrevivir. Sin embargo, si la ciencia ha demostrado que la nutrición salva vidas, porque el dietistas-nutricionista, nutriólogo o nutricionistas (dependiendo de la denominación del país) no es el protagonista de este relato. La estandarización es, en este contexto, el punto de partida de un cambio que beneficiará a todos, siempre y cuando nos comprometamos con él.

 

Robinson Cruz
**Robinson Cruz es director general del Instituto IIDENUT. Cuenta con 24 años de experiencia como nutricionista clínico, especialista en Bioquímica aplicada a la Nutrición y más recientemente como especialista en nutrición oncológica. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades.  https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Cruz R, Herrera T. Procedimientos Clínicos para la Atención en Hospitalización y consulta. 1ª Edición. Lima: Fondo editorial IIDENUT, 2013. 329 pp.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

Read More
,

Felices 15 años IIDENUT

Estimados colegas

En nombre de todos los que hacemos posible el Instituto IIDENUT, deseo agradecer sus muestras de cariño y confianza a lo largo de todo este tiempo. “Quince años” son dos palabras que se escriben muy rápido, aunque en la práctica, se van construyendo a lo largo de toda una vida. Espero sepan comprender, en este contexto, lo difícil que me resulta separar al profesional de la persona, no obstante, haré mi mejor esfuerzo para sostener mi objetividad y mesura.

Mis primeras reflexiones van destinadas a mi espectacular equipo. Sin ellos, el Instituto IIDENUT no sería lo que es. Sin su fuerza, sin su entusiasmo, sin su corazón o sin su compromiso, nada de esto sería posible. Hemos crecido junto como una familia que incorpora miembros de una manera delirante, sin embargo, hermosa. En este contexto, me resulta imprescindible reconocer el papel inalienable y decisivo de Teresa Herrera en la obtención de buena parte de estos logros. Su consejo y cercanía durante este camino han sido un apoyo importante e invaluable.  Del mismo modo, la importancia que cada uno de los miembros del núcleo intrínseco de la institución y su liderazgo en cada una de las actividades que emprendemos: Andrea Windmueller, Malena Revilla, Alexandra Lopez, Juan Suárez y Carla Zorrilla

Ahora permítanme hacer un breve recuento de lo obtenido en 3 lustros de creación. Comprenderán, al leer, que con los años todo se va escribiendo con más de dos dígitos. En lo editorial, se han editado y publicado 10 libros especializados y más de 50 números de nuestra revista indizada ReNut. En lo académico, hemos capacitado a miles profesionales de nutrición a través de cursos taller, cursos especializados y diplomados. En este último caso, en setiembre abriremos nuestra versión 18 del diplomado “Certificación profesional en nutrición clínica” para América Latina y estaremos completando la primera edición para España. En generación de contenido, nuestras secciones: “Inspírate”, “Nutritip”, “La historia de la nutrición”, “Habilidades blandas”, “Aclarando ideas con IIDENUT”, “Efemérides” y “Análisis de temas de actualidad” estimulan y alcanzan diariamente a miles y miles de profesionales de nutrición y en general de todas las áreas para mostrarles todo lo que significa vivir la nutrición. En esta misma línea, Hablando de Nutrición se trasmite ininterrumpidamente desde hace 13 años y sus casi 300 programas han contribuido con la estructuración de un lenguaje común en torno a nuestra carrera. Nuestra presencia en redes sociales también es consistente. Dos de nuestros blogs especializados reúnen a más de 700 mil seguidores registrados, sin contar nuestra larga presencia en Facebook y más recientemente en Twitter, Instagram, LinkedIn y YouTube. También hemos desarrollado decenas de documentos técnicos para cuerpos de nutrición de diferentes países. En concreto, con cada una de estas actividades, hemos contribuido con la formación, empoderamiento y con la creación de decenas de miles de puestos de trabajo destinados a Nutriólogos, Nutricionistas y Dietistas-Nutricionistas.

Es necesario en este punto, que haga una breve separación. A finales de 2016, el Instituto IIDENUT promovió la creación del Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT) como una forma de integrarnos y recoger las mejores experiencias en la práctica de la nutrición para convertirlas en un estándar de referencia para todos. Aunque nació bajo nuestro amparo, hoy tiene vida propia y transita su camino con fortaleza y aplomo. Sus casi 70 instituciones miembro pueden acreditar lo duro que ha sido el camino, pero lo satisfactorio que ha resultado en función de los logros que se han conseguido a favor de nuestra carrera. Ahora mismo, en agosto, se celebrará el IV Encuentro Iberoamericano del CIENUT con la participación virtual de 3 mil colegas de habla hispana.

El Instituto IIDENUT es, hoy en día, una marca conocida y reconocida en 19 países de Iberoamérica. Cada uno de nuestros logros ha servido para abrirle la puerta a miles de colegas en diferentes ámbitos. Hemos sido la voz de quiénes por años no tuvieron voz y encontraron aquí la forma y el aplomo de decir aquello que conocían, pero no sabían cómo comunicar.

En lo personal, no ha sido fácil dirigir este transbordador espacial que, literalmente, se ha llevado por completo un tercio de mi vida: “28” horas del día, “10” días de la semana, “14” meses del año. Con altas y bajas, he tratado en todo momento de poner el mil porciento de mi fuerza para lograr que nuestras acciones sirvan para motivar y abrirle el camino a un colega que lo necesite. A pesar de esto, tengo poco que reprocharle a mi querido IIDENUT. Quizás, alejarme temporalmente de una de mis más grandes pasiones o regalarme la inexorable soledad que se desprende de vivir así, como en este momento, conversando con mi teclado, con una copa de vino a medio acabar, del mismo modo que sucede en el lobby de un hotel o en la sala de espera de un aeropuerto.

Gracias a todos, por sus espectaculares saludos. No quiero citar nombres, por el temor de olvidar inconscientemente alguno. Gracias a todos por su cariño y confianza. Gracias a todos por creer. Gracias a todos, por escoger la nutrición y sobre todo, gracias colega por querer estudiar a diario, por llegar temprano al trabajo, por pensar que cada una de tus buenas acciones servirá para encumbrar la nutrición, por esforzarte y por llevar nuestra carrera con la dignidad y el respeto que se merece.

 

Felices 15 años, mi querido Instituto IIDENUT.

 

Robinson Cruz
Director general

Read More
,

Cúrcuma, características, composición y usos clínicos

La cúrcuma es una planta herbácea originaria de la India. Aunque este país es el primer exportador mundial de la planta, también la encontramos en países como Costa Rica, Brasil y Perú. La cúrcuma o turmérico pertenece al género Curcuma y es familiar cercano del jenjibre (kión en Perú) y el cardamomo. Dentro del género Curcuma se han identificado más de 100 especies, cada una con características diferentes. Los primeros registros histórico del uso de la cúrcuma datan del año 2500 A.C. Se le ha empleado como especie para condimentar alimentos, como colorante natural y en diversos tratamientos descritos en tratados de medicina natural sobre todo en la región asiática. De ella se extrae la curcumina, no obstante, existen decenas de sustancias adicionales con importantes propiedades moduladoras de la salud. En los últimos años, el uso de la cúrcuma ha sido asociado con el tratamiento de diversas enfermedades como, por ejemplo: osteoartritis, cáncer, diabetes mellitus, obesidad, enfermedades dermatológicas, entre otras. A continuación, un breve análisis sobre lo que dice la evidencia al respecto.

 

Características de la cúrcuma

La cúrcuma es una planta herbácea y perenne (vive más de dos años). Crece hasta un metro de alto. Sus rizomas (tallos subterráneos) presentan forma oblonga o cilíndrica. Los tallos son la parte de la planta desde donde se extraen sus principios activos característicos: a) los curcuminoides no volátiles, y b) los aceites aromáticos volátiles. Tanto el color exterior como interior de los rizomas puede variar significativamente de color de acuerdo con la especie (tabla 1).

Taxonómicamente, la cúrcuma pertenece al género Curcuma. Éste, a su vez, forma parte de la familia Zingiberaceae. Dentro del género Curcuma se han identificado entre 90-100 especies diferentes, aunque se cree que pueden existir muchas más (1). Las especies más estudiadas en el mundo son la Curcuma Longa (Curcuma L.) y la Curcuma Zedoarya (Curcuma Z.), siendo la primera la más abundante de todas. Vulgarmente, la Curcuma L., también es conocida como turmérico, palillo (Perú, Bolivia), polluelo, azafrán cimarrón; yuquilla (Cuba), jengibrillo (Puerto Rico), palillo cholón, palillo chuncho, guisador, azafrán de la India, cúrcuma de la India o jengibre de dorar. [Nota. Esta familia está integrada por hierbas robustas que crecen en bosques húmedos a menos de 2500 m.s.n.m.  Otros miembros connotados de la familia Zingiberaceae, y por tanto familiares cercanos de la cúrcuma, incluyen al cardamomo y al jengibre (kión, en Perú)].

Se cree que la cúrcuma es una planta oriunda del medio oriente y específicamente de la India, el mayor productor mundial. Su uso ha sido descrito desde hace más de 4000 años. Los primeros registros de la cúrcuma se remontan al año 600 A.C. en un documento asirio. Luego, a lo largo de los años ha sido mencionada en Grecia, India, Egipto y demás países de la región.

La cúrcuma ha sido empleada como agente colorante, condimento (ingrediente principal del curry) y como planta medicinal (2), donde ha mostrado poseer efectos positivos en el tratamiento de diversas patologías entre las que podemos citar: osteoartritis (3, 4), cáncer (5), diabetes mellitus (6), obesidad (7), enfermedades dermatológicas (8), entre otras.

 

Tabla 1. Algunas de las especies de cúrcuma, características y principal país productor.

Especie Características País productor
Curcuma longa Presenta color marrón oscuro en el exterior. Su color interno varía de amarrillo a amarillo-naranja. India, Pakistán, Bangladesh, China, Taiwán, Tailandia, Sri Lanka, Birmania, Indonesia, norte de Australia, Costa Rica, Haití, Jamaica, Brasil y Perú.
Curcuma zeodaria También llamada cúrcuma blanca. Su color exterior es parecido a aquel del jengibre.  Su color interno varia de amarrillo a amarillo-naranja, pero con menos intensidad. Noreste de India, Indonesia, Tailandia, Japón y China.
Curcuma aeruginosa También llamada cúrcuma negra o jengibre rosa y azul. Su color exterior es marrón oscuro, pero su color interior es azul. Birmania, Malasia, Tailandia, India e Indonesia.
Curcuma zanthorrhiza También conocida como tumérico de Java. Su color externo e interno es similar a la Curcuma L. Tailandia, Filipinas, Malasia y Sri Lanka.
Curcuma aromática También es conocida como tumérico salvaje. Su color externo e interno es similar a la Curcuma L. China, India y Japón.

Fuente: extraído de referencia 1

 

*****************************************
Para más información, click sobre la foto

*****************************

 

Curcuminoides no volátiles

Se conoce como curcuminoides no volátiles a un grupo de compuestos polifenólicos bioquímicamente activos: la curcumina, la demetoxicurcumina y la bisdemotoxicurcumina. De los tres, el primero es el más estudiado en el mundo (9).

La curcumina ha mostrado ser efectiva en el tratamiento del cáncer en sus diferentes etapas; combatiendo la inflamación y la presencia de radicales libres; controlando la inflamación endotelial que suele agravar el curso de las enfermedades cardiovasculares; permitiendo la regulación de la glicemia en la diabetes mellitus; en el manejo de la obesidad; la enfermedad inflamatoria intestinal; en problemas de la piel; y, en el control de la alergia y el asma. Los mecanismos moleculares son diversos (tabla 2). En el caso del cáncer, modula la actividad de ciertas ciclinas, las vías de regulación de la supervivencia celular a través del control la actividad de oncogenes como MYC-C o proteínas específicas dentro la apoptosis como la BcL. A nivel inflamatorio, reduce la síntesis de interleucinas y citoquinas clave en el desarrollo de la inflamación. En general, la curcumina tiene un impacto significativo sobre el control del proceso inflamatorio asociado con diversas enfermedades sistémicas. Cabe precisar, sin embargo, que la mayoría de estos estudios han sido llevados a cabo in vitro y en animales. Todavía está pendiente una investigación profunda que incluya seres humanos (10).

 

Tabla 2. Efectos de la curcumina

Efecto Mecanismo
Anticáncer Modulo positiva o negativamente el comportamiento de: ciclinas como D1, vías que regulan la supervivencia celular (MYC-C, Bcl-2, Bcl-XL, Bcl-2, Bcl-xL, cFLIP, XIAP y cIAP1), la vía de activación de caspasas (caspasa ¡8, ¡3, and ¡9), la vía supresora de tumores (p53, p21), la vía de receptor de muerte (DR4, DR5), diversas vías asociadas con la proteína quinasa (c-Jun, JNK, PKB, AMPK.
Antiinflamatorio y antioxidante Ejerce regulación negativa sobre interleucinas proinflamatorias (IL1, IL2, IL6, IL8, IL12), citoquinas (TNF, MCP-1). También tiene poder inhibitorio de la síntesis de enzimas tales como iNOS, COX2.
Antiinflamatorio en enfermedades cardiovasculares Inactiva la expresión de hemo oxigenasa 1 (H0-1), reduce la síntesis de TNF,
Control de la diabetes mellitus Estimula la expresión de genes GLUT2, GLUT3, y GLUT4.
Control de la obesidad Suprime la actividad de la MAPK, reduce la diferenciación de adipocitos, reduce la infiltración de macrófagos, reduce la síntesis de leptina y estimula la síntesis de adiponectina.
Enfermedad inflamatoria intestinal Inhibe la AP-1, las proteínas STAT, los receptores PPAR-g, COX2, 5-LOX, Inos. Suprime la activación de la NF-KB basada en TLR4.

 

Fuente: adaptado de referencia 10

 

Aceites aromáticos volátiles

Los aceites aromáticos volátiles contienen cantidades variadas de distintos sesquiterpenoides, monoterpenoides y otros compuestos aromáticos, entre los que podemos citar a: ar-tumerona, alfatumerona, beta tumerona, alfa-curcumena, zingiberna, beta bisabolena, beta sesquifiladrena, gamma atlantona, xantorrizol, curcumeno, curcumol, geracrona, curdiona, curzerenona, beta cariofilena, beta farneseno, beta elemenona, beta elemena, canfor, entre otros (1).

Los aceites aromáticos son extraídos de rizomas frescos o secos empleando destilación por vapor. También se pueden utilizar solventes que se aplican a diferentes partes de la planta. Industrialmente, estos aceites son obtenidos como un subproducto de la extracción de la curcumina desde la oleorresina que la contiene en la planta.  De un modo u otro, los aceites extraídos de la cúrcuma presentan una composición extremadamente variable de compuestos bioquímicamente activos. Estas diferencias dependerán, entre otros factores, de: el genotipo de la planta, su variedad, el lugar donde fue cultivada, el clima, la estación, la técnica de cultivo, la aplicación de fertilizantes, la madurez al momento de la cosecha, el almacenamiento y el método de extracción empleado. Por ejemplo, especies como la curcuma L., pueden presentar cientos de compuestos diferentes, sin embargo, los más abundantes son: ar-turmerona, alfa-turmerona, y beta-turmerona, seguidos por cantidades variables de beta-zingiberena, curlona, ar-curcumena, entre otros (1).

Estudios llevados a cabo in vitro y en animales han mostrado que los compuestos presentes en los aceites aromáticos presentan actividad biológica significativa sobre diversos procesos orgánicos. Entre estos podemos citar: antiagregación plaquetaria, acción hipoglicemiante, antiinflamatoria, neuroprotectora, citotóxica, antibacterial, antifúngica entre otras (tabla 3).

 

Tabla 3. Actividad biológica de los compuestos bioquímicamente activos presentes en los aceites extraídos de la cúrcuma

Compuesto Actividad biológica
Ar-tumerona Antiagregación plaquetaria, hipoglicemiante, antiinflamatorio, neuro protector, citotóxico y anti proliferativo.
Cardiona Anticáncer, antiinflamatorio, antibacterial, antifúngico.
Beta cariopilena Antitumoral
Mirceno Anti mutagénico, anti proliferativo, antioxidante
Germacrona antiinflamatorio, anti androgénico, mejorador de la penetración en la piel, anti proliferativo, antitumoral, antioxidante, antitumoral, antibacterial.
Xantorrizol Antioxidante, nefro protector, neuro protector, hepato protector, antitumoral, antiinflamatorio.
Beta Elemeno Anti proliferativo
Terpinolena Antioxidante
Curcumol Anticáncer
Curzerena Antioxidante, anticáncer
Ar-curcumena Antitumoral
Alfa feladreno antioxidante

Fuente: Adaptado de referencia 1

 

Seguridad en el uso de la curcumina

Estudios llevados a cabo en animales no han mostrado que la curcumina genere toxicidad aguda o crónica. Éstos tampoco han mostrado mutagenicidad ni genotoxicidad, incluso cuando se emplearon dosis elevadas por periodos que comprendían hasta 90 días (11).

Los estudios llevados a cabo en humanos tampoco mostraron efectos tóxicos sobre ningún órgano. En estos trabajos se emplearon dosis de curcumina que variaron entre 0.5 – 4 g/d por un periodo máximo de 6 meses consecutivos. Cabe precisar, sin embargo, que la curcumina puede afectar significativamente la cinética de diversos medicamentos. Los curcuminoides inhiben el CYP2C9 y el CYP3A4 por lo cual, pueden incrementar considerablemente la concentración plasmática de ciertos grupos farmacológicos tales como: anticoagulantes, antibióticos, medicamentos cardiovasculares, medicamentos anticáncer y antidepresivos, por citar algunos grupos (11). En razón de lo citado, debe verificarse la interacción fármaco nutriente previa a la indicación del uso de curcumina.

 

Biodisponibilidad de la curcumina oral

La curcumina presenta una pobre solubilidad en agua, gran inestabilidad química y sobre todo una muy baja biodisponibilidad intestinal. Los estudios llevados a cabo en seres humanos han mostrado que, incluso consumiendo grandes dosis, la curcumina se absorbe pobremente y se elimina muy rápido del cuerpo. En este sentido, se han desarrollado diferentes combinaciones de productos que buscan mejorar la biodisponibilidad oral de la curcumina, tanto mejorando su absorción como reduciendo su eliminación. La asociación de curcumina con pimienta negra incrementa hasta 3 veces la concentración plasmática de la curcumina. La piperina es un alcaloide natural presente en la pimienta negra (Piper nigrum). Este compuesto inhibe potentemente la glucoronidación que sufre la curcumina en el hígado. Al reducir este proceso, se incrementa la concentración plasmática de la curcumina. Las combinaciones sugeridas son: 2 g de curcumina + 5 mg de piperina o 4 g de curcumina + 24 mg de piperina. El uso de lecitina junto con curcumina también mejoró considerablemente su concentración plasmática. La lecitina mejora la biodisponibilidad intestinal de la curcumina. La combinación sugerida incluye 4 g de curcumina y 400 mg de lecitina. También se ha sugerido consumir la curcumina con yema de huevo para aprovechar la lecitina presente en el alimento. Finalmente, los mejores resultados se encontraron en presentaciones sólidas que incluían alguna forma de recubrimiento que proporcionará un mejor vehículo a la curcumina. (12).

  

Conclusiones

  • La cúrcuma es una planta herbácea perteneciente al género Curcuma.
  • Aunque se han identificado más de 100 especies diferentes, la más estudiada y abundante en el mundo es la curcuma longa (Curcuma L.)
  • De los rizomas de la planta se extraen dos productos principales: curcuminoides no volátiles y aceites aromáticos volátiles.
  • Los curcuminoides son la curcumina, la demetoxicurcumina y la bisdemotoxicurcumina.
  • Los aceites aromáticos volátiles contienen cantidades variables de terpenoides diferentes.
  • La cúrcuma ha mostrado poseer efectos positivos en el tratamiento de diversas patologías entre las que podemos citar: osteoartritis, cáncer, diabetes mellitus, obesidad, enfermedades dermatológicas, entre otras.
  • La curcumina se absorbe mal y se elimina rápidamente del cuerpo.
  • Asociar curcumina con pimienta negra, o con lecitina de soya mejora su biodisponibilidad.
  • Las formas sólidas que incluyen algún tipo de recubrimiento han mostrado mejorar significativamente la biodisponibilidad de la curcumina.

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Nutrients. 2018 Sep 1;10(9):1196. doi: 10.3390/nu10091196. PMID: 30200410; PMCID: PMC6164907.
  2. Guest PC, Sahebkar A. Research in the Middle East into the Health Benefits of Curcumin. Adv Exp Med Biol. 2021;1291:1-13. doi: 10.1007/978-3-030-56153-6_1. PMID: 34331681.
  3. Dai W, Yan W, Leng X, Chen J, Hu X, Ao Y. Effectiveness of Curcuma longa extract versus placebo for the treatment of knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021 Nov;35(11):5921-5935. doi: 10.1002/ptr.7204. Epub 2021 Jul 2. PMID: 34216044.
  4. Zeng L, Yu G, Hao W, Yang K, Chen H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep. 2021 Jun 25;41(6):BSR20210817. doi: 10.1042/BSR20210817. PMID: 34017975; PMCID: PMC8202067.
  5. Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients. 2019 Oct 5;11(10):2376. doi: 10.3390/nu11102376. PMID: 31590362; PMCID: PMC6835707.
  6. Karlowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A. CURCUMA LONGA AS MEDICINAL HERB IN THE TREATMENT OF DIABET- IC COMPLICATIONS. Acta Pol Pharm. 2017 Mar;74(2):605-610. PMID: 29624265.
  7. Uchio R, Kawasaki K, Okuda-Hanafusa C, Saji R, Muroyama K, Murosaki S, Yamamoto Y, Hirose Y. Curcuma longa extract improves serum inflammatory markers and mental health in healthy participants who are overweight: a randomized, double-blind, placebo-controlled trial. Nutr J. 2021 Nov 13;20(1):91. doi: 10.1186/s12937-021-00748-8. PMID: 34774052; PMCID: PMC8590273.
  8. Vaughn AR, Branum A, Sivamani RK. Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence. Phytother Res. 2016 Aug;30(8):1243-64. doi: 10.1002/ptr.5640. Epub 2016 May 23. PMID: 27213821
  9. García Ariza Leidy Lorena, Olaya Montes Quim Jorge Humberto, Sierra Acevedo Jorge Iván, Padilla Sanabria Leonardo. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med  [Internet]. 2017  Mar [citado  2023  Abr  05] ;  22( 1 ). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962017000100007&lng=es.
  10. Betül Kocaadam & Nevin Şanlier (2017) Curcumin, an active component of turmeric (Curcumalonga), and its effects on health, Critical Reviews in Food Science and Nutrition, 57:13, 2889-2895, DOI: 10.1080/10408398.2015.1077195
  11. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res. 2018 Jun;32(6):985-995. doi: 10.1002/ptr.6054. Epub 2018 Feb 26. PMID: 29480523.
  12. Dei Cas M, Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients. 2019 Sep 8;11(9):2147. doi: 10.3390/nu11092147. PMID: 31500361; PMCID: PMC6770259.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Métodos de cocción y aparición de sustancias tóxicas

Los métodos de cocción buscan, entre otras cosas, mejorar el valor nutricional del alimento, sus características organolépticas o asegurar su inocuidad. No obstante, estos procesos también pueden contribuir con la aparición de distintos tipos de sustancias cuyo consumo regular está asociado con el desarrollo de enfermades crónicas tales como dislipidemias o incluso cáncer. En un mundo cargado por la presión de la publicidad, hemos puesto particularmente atención en el uso del microondas cuando de lejos es uno de los elementos que menos sustancias tóxicas puede generar cuando es empleado adecuadamente; mientras que, por otro lado se ha asumido que la freidora de aire es totalmente inocua. A continuación, un breve análisis al respecto.

 Métodos de cocción

Los métodos de cocción incluyen a todos aquellos procedimientos que buscan modificar las características de los alimentos crudos. La cocción puede presentar objetivos diversos, entre los que podemos citar: mejorar el aporte nutricional del alimento, mejorar sus características organolépticas (sabor, color, aroma) o eliminar la presencia de sustancias o microorganismos dañinos para el comensal. La cocción se puede llevar a cabo bajo diferentes métodos, sin embargo, la forma más importante de cocer es a través de la transferencia directa o indirecta de calor. También se emplea, aunque en menor medida, la inmersión en sustancias químicas tales como el limón o el ácido acético.

Los métodos de cocción se pueden clasificar en 3 categorías: húmedos, secos y mixtos (tabla 1). En la cocción húmeda, el alimento es introducido en un líquido frío que se va calentando poco a poco o directamente en un líquido caliente. Otra forma de cocción húmeda incluye la exposición del alimento al vapor. En los métodos húmedos el alimento conserva todo su contenido de agua. Nutricionalmente, los métodos húmedos pueden generar la pérdida de ciertos micronutrientes, sobre todo, en aquellos procesos que involucran remojo o cambio de agua durante la preparación. En la cocción seca, por otro lado, no se emplea ni agua ni vapor. La temperatura empleada es considerablemente más alta que aquella empleada en la cocción húmeda. En la cocción seca, el alimento es expuesto directamente al calor. También se puede utilizar aceite o algún otro tipo de grasa como medio que evite que el alimento se pegue a los utensilios empleados para cocinar. La cocción seca genera una considerable pérdida de agua desde el alimento. También puede estimular la activación de ciertas reacciones enzimáticas como la reacción de Maillard (pardeamiento). Tanto la deshidratación como las reacciones enzimáticas contribuyen a que el sabor sea mucho más intenso. Nutricionalmente, la pérdida de micronutrientes suele ser menor en este tipo de cocción (1).

 

Tabla 1. Clasificación de los métodos de cocción y ejemplos.

Tipo de cocción Ejemplos Descripción del método
Cocción húmeda Al vapor Colocar los alimentos en una especie de parrilla o recipiente agujereado que, a su vez, se encuentra encima de un líquido en ebullición.
  Blanquear Colocar el alimento en abundante agua hirviendo hasta por 2 minutos dependiendo del ingrediente. Luego, el alimento debe ser enfriado rápidamente en agua helada.
  Escalfar El alimento se calienta en un líquido mientras se agita lentamente. El líquido no debe hervir.
  Hervir El alimento se coloca en un líquido, generalmente agua en ebullición (100ºC).
  Estofar El alimento se coloca en un recipiente junto con otros productos y se tapa para que se puedan mezclar los jugos.
  Rehogar El alimento es sometido al calor con poco aceite y a una temperatura media-alta (sin llegar a los 100ºC).
  Sofreír El alimento es sometido al calor con poco aceite y a una temperatura menor a aquella usada en el rehogado.
  Guisar El alimento, previamente rehogado, se hace hervir en una salsa o caldo.
  Confitado El alimento es cocinado en grasa caliente (aceite, grasa de pato, manteca, mantequilla clarificada, etc.) con el recipiente tapado para lograr su cocción sin que se dore.
Cocción seca Fritura El alimento se somete a una inmersión rápida en un baño de grasa o aceite a temperaturas altas, de entre 150 y 180 °C.
  Horneado El alimento se introduce en el horno, colocándolo sobre bandejas o cazuelas especiales y sometiéndolo al calor que se transmite por radiación y convección y a una temperatura elevada mayor a 200ºC.
  Parrilla/grillado El alimento es colocado sobre una parrilla o grilla muy caliente.
  Plancha El alimento es colocado sobre una plancha o una placa de metal muy caliente que va directamente sobre el fuego.
  Salteado El alimento se cocina rápidamente en fuego alto con un poco de grasa y en movimientos constantes.
  Rostizado El alimento es atravesado por un fierro y puesto a girar sobre aire caliente o fuego.
  Tostado El alimento es expuesto a calor intenso sin grasa hasta que adquiere un color pardo, caramelo o negro por la caramelización de su exterior.
Cocción mixta Braseado El alimento, previamente frito o sometido a cualquier otro método seco, es puesto a cocción lenta en algún tipo de líquido o con otros alimentos.
  Gratinado El alimento, ya preparado, es cubierto por una capa de queso que al fundirse por el calor directo genera una capa fundida y crujiente.

 

*****************************************
Para más información, click sobre la foto

*****************************

Las sustancias tóxicas que pueden aparecer con la cocción

 

Aunque la cocción genera infinidad de cambios en el alimento que son beneficiosos para el comensal, también puede contribuir con la aparición de sustancias potencialmente tóxicas cuyo consumo regular está asociado con el desarrollo de enfermedades tales como ateroesclerosis o cáncer. Estas sustancias incluyen:  aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas y especies reactivas de oxígeno. Describamos brevemente qué son y cómo se forman.

Aminas aromáticas heterocíclicas (AAHs)

Las AAHs son sustancias que se producen a partir de los 100°C, sin embargo, la intensidad de su producción se incrementa significativamente a partir de los 170°C. Son compuestos que se generan debido a la interacción entre el calor y los compuestos nitrogenados presentes en las carnes. Existen dos tipos de AAHs: a) las térmicas que se producen por reacción de aminoácidos libres, creatina, creatinina y hexosas a temperaturas de entre 170-200°C; y b) las pirolíticas que se producen por ruptura de aminoácidos y proteínas a temperaturas mayores a 300°C (2). Estudios hechos en animales han mostrado que el consumo de AAHs está asociado con cáncer de mama, colon, hígado, piel, pulmón, próstata y otros órganos. ¿Dónde se concentran las AAHs? Se concentran en las zonas muy doradas o quemadas de la carne.

Hidrocarburos aromáticos policíclicos (HAPs)

Los HAPS son compuestos que se forman por la exposición de alimentos ricos en grasas o proteínas a temperaturas superiores a 300°C, aunque su producción tiene un pico máximo a partir de 400°C (3). El consumo crónico de HAPs a través de la ingesta dietaria está asociado con problemas de coagulación (disminución de plaquetas) y del sistema inmunitario (disminución de leucocitos), así como carcinogénesis en algunos casos. Estudios en animales han mostrado que el consumo de HAPs está asociado con el desarrollo de leucemia, tumores gastrointestinales y pulmonares. ¿Dónde se concentran los HAPs? Se concentran en las zonas con sabor a ahumado. Estos elementos le otorgan el sabor ahumado a los alimentos.

Nitritos y nitrosamidas

Los nitritos y nitrosamidas son compuestos nitrogenados que se forman en las carnes cuando éstas son sometidas a altas temperaturas. Su consumo excesivo está altamente relacionado con el desarrollado de cáncer gástrico (4). ¿Dónde se concentran los nitritos y nitrosamidas? Los nitritos se concentran en las zonas muy doradas o quemadas de la carne. Las nitrosamidas, por lo general, se producen en el cuerpo a partir del nitrito ingerido.

Acrilamida

La acrilamida se forma por la reacción entre la asparagina y los azúcares (glucosa y fructuosa) presentes en alimentos de alto contenido de almidón. La formación de acrilamida es parte de la reacción de Maillard que oscurece los alimentos y les otorga un aroma deseable. La formación de acrilamida se produce cuando los alimentos ricos en almidón (papa, camote, yuca, arroz, cebada, quinua, trigo y derivados, entre otros) se someten a temperaturas superiores a los 120 °C, aunque su punto crítico de formación se ubica entre los 160 °C y 200°C. La acrilamida se absorbe intestinalmente y es potencialmente carcinogénica en animales, aunque todavía no se ha definido con exactitud cuál es su impacto en el hombre ni cuáles son los tejidos afectados particularmente (5).

Especies reactivas de oxígeno

Estas sustancias aparecen debido a la exposición de aceites o grasas a la temperatura. Dependiendo de la estructura química de los aceites o grasas, éstos pueden presentar mayor o menor resistencia a la temperatura. El punto de humo o punto de humeo es uno de los factores más importantes que sirven para determinar su resistencia. El punto de humo es la temperatura a la cual el aceite o la grasa produce un espiral continuo de humo que actúa como un indicador de que el aceite o la grasa ha alcanzado su punto máximo de tolerancia al calor. El punto de humo está relacionado con la cantidad de ácidos grasos libres presentes en el aceite o grasa, es decir, no solo importa el contenido de ácidos grasos insaturados, sino que además importa la presencia de ácidos grasos libres. Por definición, mientras más alto sea el punto de humo, más apropiado será el aceite o la grasa para cocinar o freír. Sin embargo, debe ser precisado que mientras más veces re-utilice el mismo aceite o grasa, el punto de humo será cada vez menor. Por ejemplo, si en el primer uso fue de 200°C, en su segundo uso podría ser 170°C, en el tercer uso 140°C y así sucesivamente. Mientras más bajo sea el punto de humo, más rápido se empezarán a producir sustancias tóxicas al someter al aceite o grasa a la temperatura (6). Cuando un aceite o grasa alcanza su punto de humo se empiezan a producir una serie de reacciones químicas que incluyen: oxidación, hidrólisis, la ciclalización, la polimerización y eventualmente degradación hasta compuestos volátiles altamente cancerígenos (también llamados genotóxicos)(7). Además, también se produce la ruptura de enlace que genera una liberación significativa de cantidades importantes de especies reactivas de oxígeno (ROS). Éstos pueden contribuir con el aumento de la presión arterial, producir ateroesclerosis, disfunción endotelial, vaso relajación fallida y dislipidemias (8,9).

Métodos de cocción y sustancias tóxicas presentes en los alimentos

La temperatura es uno de los factores que más contribuye con la aparición de sustancias tóxicas en los alimentos. Mientras más alta sea, mayor será la concentración de estos elementos en la preparación. Cualquier proceso de cocción que supere los 180°C es un potencial generador de sustancias tóxicas. En la tabla 2, se puede observar cuáles son los métodos de cocción que más están relacionados con la generación de elementos indeseables.

La cocción húmeda emplea temperaturas que difícilmente superan los 130°C, razón por la cual, la aparición de AAHs, HAPs, nitritos, acrilamidas o especies reactivas de oxígeno es prácticamente imposible.

La cocción seca involucra a una gran cantidad de técnicas de cocción. Éstas se pueden producir por descomposición del aceite o grasa que se emplea para evitar que el alimento se pegue en el utensilio de cocción o sobre el propio alimento por efecto directo o indirecto de la temperatura.

Por el lado del aceite o grasa, debe recordarse que son sensibles a las temperaturas elevadas. La mayoría de los aceites comerciales presentan un punto de humo que oscila entre los 180-220°C, sin embargo, ese rango cae considerablemente cuando el aceite se emplea a temperaturas mayores o se reutiliza.

Por el lado de las sustancias producidas sobre el alimento, prácticamente todas, se empiezan a producir intensamente por encima de los 200°C. La presencia de zonas más doradas de lo normal o quemadas es una evidencia directa de la presencia de AAHs, nitritos o acrilamidas. El sabor ahumado, mientras más intenso sea, indica la presencia de HAPs.

Desde hace mucho existe la controversia sobre si el microondas puede generar sustancias tóxicas en el alimento. Desde el lado de las ondas emitidas por este artefacto no existe evidencia alguna que puedan ser absorbidas por el alimento y por tanto puedan afectar nuestra salud. Ahora bien, cocinar demasiado el alimento en horno microondas o en un horno convencional puede generar zonas demasiado doradas o quemadas que son ricas en AAHs, nitritos o acrilamidas dependiendo si se trata de carnes o alimentos ricos en almidón, respectivamente.

Por otro lado, las freidoras de aire también se han presentado como una solución segura para cocinar saludablemente. Esto está directamente relacionado con el no uso de aceite o grasa, sin embargo, la posibilidad de que se puedan formar otras sustancias como AAHs, nitritos o acrilamidas sigue estando latente. Esto dependerá de la temperatura empleada para cocinar.

 

Tabla 2. Tipos de cocción, ejemplos, temperaturas empleadas y sustancias tóxicas en riesgo de aparición.

Tipo de cocción Ejemplos Temperatura empleada Sustancia tóxica en riesgo de aparición
Cocción húmeda Al vapor, blanquear, escalfar, hervir, estofar, guisar, reahogar, confitado. Hasta 150°C Ninguna
Cocción seca Fritura, horneado, parrilla/grillado, plancha, rostizado, tostado. 150°C – 400 °C Aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas, especies reactivas de oxígeno (ROS).

 

Cocción mixta Braseado, gratinado 150°C – 400 °C Aminas aromáticas heterocíclicas (AAHs), hidrocarburos aromáticos policíclicos (HAPs), nitritos, acrilamidas, especies reactivas de oxígeno (ROS).

 

Recomendaciones

  • Utilice con regularidad métodos de cocción húmedos.
  • Reduzca el consumo de métodos de cocción que empleen temperaturas superiores a los 200°C.
  • Reduzca el consumo de métodos de cocción que sometan el alimento al fuego directo.
  • Deseche las zonas más doradas o quemadas presentes en los alimentos.
  • El marinado o adobado reduce la producción de AAHs y nitritos durante los procesos secos.
  • Reduzca el consumo de alimentos que han sido expuestos al humo de brasas por mucho tiempo.

 

Si quieres aprender más sobre cómo aplicar esta información y otras más en el tratamiento nutricional de tus pacientes, participa de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFSIONAL EN NUTRICIÓN CLÍNICA. Haz click, AQUÍ, para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Lara A. Guía de métodos de cocción. Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez. Vicerrectorado de Extensión Académica Subdirección de Extensión IPMJMSM Diplomado de Profesionalización Gastronómica. 2018.
  2. [tesis doctoral] Agudelo L. Determinación de aminas aromáticas heterocíclicas en carnes cocidas mediante extracción con microondas y líquidos iónicos. Universidad Nacional de la plata. Argentina 2015. Disponible en: http://sedici.unlp.edu.ar/handle/10915/46523
  3. Agencia española de seguridad alimentaria y nutrición. Hidrocarburos aromáticos policíclicos. España: 2020.
  4. Song P, Wu L, Guan W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 2015, 7, 9872–9895; doi:10.3390/nu7125505.
  5. Agencia española de seguridad alimentaria y nutrición. España: 2020.
  6. Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med J. 2016 Sep;50(3):189-196. PMID: 27752194; PMCID: PMC5044790.
  7. Ganesan K, Sukalingam K, Xu B. Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review. Crit Rev Food
  8. Kumar Ganesan, Kumeshini Sukalingam & Baojun Xu (2017): Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1379470 Sci Nutr. 2019;59(3):488-505. doi: 10.1080/10408398.2017.1379470. Epub 2017 Oct 20. PMID: 28925728
  9. 5Kadhum AA, Shamma MN. Edible lipids modification processes: A review. Crit Rev Food Sci Nutr. 2017 Jan 2;57(1):48-58. doi: 10.1080/10408398.2013.848834. PMID: 26048727.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Metales contaminantes en los pescados

El pescado y sus derivados son un componente esencial en la dieta de las personas. Su proteína de alta calidad y sus ácidos grasos son nutrientes de un valor excepcional. Lamentablemente, la actividad industrial ha contribuido con la contaminación del agua de ríos y mares, con lo cual, el consumo de carne de pescado podría acarrear ciertos riesgos que vale la pena analizar. Los metales son, en este contexto, uno de los contaminantes más importantes que se pueden encontrar en este tipo de animal. Sin embargo, ni todos los metales son tóxicos para los seres humanos, ni todos los pescados presentan niveles tan elevados de contaminación como para prohibirlos en la dieta. Revisemos brevemente que se ha sabe al respecto.

 

Valor nutricional del pescado

El pescado y sus derivados son considerados un componente esencial de la dieta humana debido a su significativamente alto valor nutricional, sobre todo, en función de su contenido elevado de proteína y grasa de buena calidad; en menor medida también aporta algunas vitaminas y minerales. La proteína es el componente más abundante de la carne de pescado. Ésta representa entre 15%-21% del peso de la pulpa. Esta proteína es de alto valor biológico, es decir, presenta todos los aminoácidos esenciales, aunque con cantidades ligeramente menores de triptófano comparado con la carne de res o de otros mamíferos (1). La carne de pescado tiene una digestibilidad significativamente mayor a aquella de la carne de res o de pollo. La puntuación de aminoácidos corregida por su digestibilidad (PDCAAS, por sus siglas en inglés) de la carne de pescado es de aproximadamente 95% contra el 94% o 92% de la carne de pollo y res, respectivamente (2). De hecho, la carne de pescado puede ser digerida con tanta facilidad que la podemos consumir prácticamente cruda. El otro estandarte nutricional de la carne de pescado lo encontramos en su contenido de grasa. Éste puede fluctuar entre 0.2%-25% del peso de la pulpa dependiendo del tipo de pescado (1). Esta grasa es insaturada rica en ácidos grasos esenciales. Cabe resaltar, en este sentido, que la grasa del pescado es la fuente más importante de ácido graso eicosapentaenoico (EPA) y de ácido graso docosahexaenoico (DHA), el primero útil en el tratamiento de problemas inflamatorios y el segundo en la salud neurológica, y en conjunto importantes en el tratamiento de diversas enfermedades crónico degenerativas.

 

Metales contaminantes

Los metales contaminantes están presentes en el ambiente de manera natural, pero su concentración puede incrementarse significativamente a partir de la actividad industrial humana. No todos son considerados tóxicos o peligrosos ni para los peces ni para los seres humanos. En algunos casos, incluso, pueden ser útiles para la persona como es el caso de hierro, cobre, zinc o selenio, siempre y cuando mantengan ciertas concentraciones y no las superen. Por otro lado, existe otro grupo de metales que son considerados tóxicos incluso en muy pequeñas concentraciones como es el caso del plomo (Pb), niquel (Ni), antimonio (Sb), cadmio (Cd), arsénico (As) o mercurio (Hg) por citar algunos ejemplos. También es importante considerar la forma química en la que se encuentran en la carne o en la naturaleza porque de eso dependerá qué tanto se puede acumular en el animal (3).

La actividad humana deposita grandes cantidades de estos metales en los suelos. La fundición, la minería, la fabricación de material médico y odontológico, la fabricación de herbicidas, fungicidas, la combustión de combustibles fósiles, la incineración de basura y otros procesos industriales son considerados fuentes importantes y permanentes de estos contaminantes. Cuando estos metales son depositados en el suelo pueden llegar a ríos pequeños o ser vaporizados y llegar a las nubes. En ambos, tanto a través de ríos, a través del ciclo del agua, o depositados directamente, alcanzan el sedimento marino donde pueden ser procesados por las bacterias, incorporarse al plancton o ser consumidos por peces pequeños que a su vez serán alimento de peces de mayor tamaño. Aunque en la práctica, son muchos los metales potencialmente tóxicos, en esta revisión solo nos referiremos a 4 de los más estudiados.

Arsénico (As). El As es utilizado en actividades de fundición, fabricación de vidrio, en la fabricación y uso de pesticidas, herbicidas, fungicidas y preservantes de madera.

El arsénico existe en 4 estados de oxidación: -3, 0, +3 y +5. La mayoría de los compuestos arsenicales se encuentran en estado de oxidación pentavalente (+5). Presentan forma orgánica e inorgánica (4). Esta última es la más tóxica por ser más estable y soluble en agua. Esta propiedad le permite ser absorbida en el tracto digestivo, cavidades e incorporarse en los músculos. La forma orgánica no se acumula en el cuerpo humano y se excreta con facilidad. La forma inorgánica se encuentra disuelta en agua mientras que la forma orgánica está, principalmente, presente en la carne de pescado.

La exposición aguda a As puede generar dolor abdominal, vómitos, diarrea, debilidad muscular, enrojecimiento de la piel, mientras que la exposición crónica puede causar defectos en la piel y cáncer.

Cadmio (Cd). El Cd puede ser liberado a partir de la fundición de otros metales, la combustión de combustibles fósiles, la incineración de basura y el uso de ciertos fertilizante.

La forma libre de Cd está presente en el agua dulce, mientras que, en los océanos, la alta salinidad del agua estimula la formación de compuestos inorgánicos tales como el cloruro de Cd. En este contexto, el Cd presente en el agua dulce es mucho más tóxico que el Cd presente en el mar debido a que la biodisponibilidad del Cd a partir de sus compuestos inorgánicos es mucho menor para los peces (5). A pesar de que los peces de mar contienen muy poco Cd libre, ellos siguen siendo una de las principales fuentes de cadmio tóxico para el hombre. El Cd ingresa en ellos a través de las branquias, el plancton y otros elementos de su dieta. Una vez dentro, el Cd tiende a formar complejos con las proteínas, por tanto, tiene una fuerte tendencia a acumularse.

La exposición al Cd es altamente tóxica para los seres humanos. Este mineral puede producir hipertensión arterial, desórdenes cardiovasculares y neurológicos, defectos y debilidad ósea, así como también, presenta un efecto carcinogénico.

Plomo (Pb). El plomo es un metal ampliamente empleado en la industria. La combustión de gasolina alta en plomo es una de las principales fuentes de plomo que alcanzan la atmósfera. De allí pasa al mar, donde es fácilmente incorporado en la circulación sanguínea de los peces para acumularse finalmente en sus tejidos. Los compuestos orgánicos de Pb son más tóxicos que los compuestos inorgánicos. El 50-70% del Pb encontrando en los océanos se encuentra bajo la forma orgánica (2).

Mercurio (Hg). El mercurio es el metal pesado que más impacto tiene en la salud de las personas. El Hg es utilizado en la fabricación de pinturas, equipos eléctricos, baterías, fungicidas, así como también en la medicina, odontología y en el sector militar. La minería también contribuye significativamente con el aporte de Hg en la naturaleza.

El mercurio está presente en la naturaleza en diferentes formas. El Hg (Hg0) elemental y los iones de Hg (Hg+2) son abundantes en el ambiente, pero no se acumulan en los peces. Ahora bien, la evaporación del agua y su pase a la tierra crea un ciclo que contribuye a la formación de diferentes compuestos de Hg. Los compuestos orgánicos son más tóxicos por ser más estables y acumulables en el cuerpo humano, mientras que los compuestos inorgánicos no son considerados tóxicos porque se acumulan pobremente en el cuerpo. Los compuestos inorgánicos incluyen: cloruro mercurioso, cloruro mercúrico, acetato mercúrico y sulfato mercúrico. Lamentablemente, tanto las bacterias del sedimento marino como las branquias de los peces pueden metilar estos compuestos hasta formar compuestos orgánicos tales como el altamente tóxico metilmercurio (MeHg). Aunque también se pueden formar otros compuestos metilados, el metilmercurio es el más altamente tóxico conocido (2).

 

*****************************************
Para más información, click sobre la foto

*****************************

Exposición a metales contaminantes a través del consumo de pescado

Los cuerpos regulatorios alrededor del mundo han mostrado una fuerte preocupación sobre el contenido de metales contaminantes en el pescado y sus derivados. Además, diversas organizaciones gubernamentales nacionales han establecido sus propios valores de consumo máximo tolerable en función de la situación particular. A continuación, una breve descripción al respecto.

El arsénico está presente en diferentes productos alimenticios. Lamentablemente, hasta el momento las referencias sobre límites máximos en pescados son muy escazas. Tomando en cuenta que las formas inorgánicas de arsénico son las más tóxicas, los cereales serían los principales contribuyentes a la dieta (6); mientras que los pescados, tendrían un aporte mucho menor porque la mayor parte del arsénico presente en estos animales se encuentra bajo la forma de compuestos orgánicos relativamente inocuos. La arsenobetaína es el principal compuesto organoarsenical presente en productos marinos. También se pueden encontrar arsenolípidos tales como arsenohidrocarburos y arseno ácidos grasos (4).

En relación con el plomo, el límite máximo en la carne de pescado ha sido establecido en 0.3 mg/kg (7). En este caso, la única forma de evitar o reducir el contenido del metal en las carnes es la reducción de la emisión de partícula del metal. Del lado del cadmio, los límites máximos en la carne de pescado han sido diferenciados de acuerdo con la especie de pescado y varían entre 0.05 mg/kg y 0.25 mg/kg (8).  Debe tomarse en consideración, que debido a la salinidad del agua de mar, la biodisponibilidad de cadmio en los peces marinos es mucho menor que en los peces de agua dulce. En el agua de mar, el cadmio forma complejos con el cloro del agua y de ese modo se absorbe con menor facilidad.

El mercurio, y sobre todo el metilmercurio, es el metal sobre el cual se ha desarrollado mayor investigación. Los límites máximos tolerables en la carne se ubican en 1 mg/kg (9). En 2015, el grupo de estudio para la prevención de los efectos adversos para la salud (GEPREM-Hg) integrado por representantes de diversas sociedades científicas españolas publicaron un consenso al respecto (10). De este documento, extraemos las ideas más importantes:

  • La principal fuente de exposición de las personas al MeHg es el pescado.
  • Los peces de mayor tamaño como el emperador, pez espada, tiburón, atún o merlín son los que presentan mayor contenido de MeHg.
  • El MeHg se une a la proteína, por eso, es imposible eliminarlo.
  • La presentación del pescado (fresco, congelado, enlatado) no influye en su contenido de MeHg.
  • El líquido de cobertura en una conserva (aceite, agua, escabeche) no influye en el contenido de MeHg.
  • El contenido de MeHg varía de especie a especie y de zona de pesca.
  • No es necesario prohibir el consumo de ciertas especies, solo espaciarlo.
  • El EPA y el DHA presentes en el pescado pueden tener efectos protectores neurológicos contra los daños del MeHg. El selenio también parece tener efecto protector por lo que se sugiere medir la relación Se/MeHg en sangre para determinar el grado de toxicidad del metal.
  • En relación con el consumo de las especies más contaminadas como son pez espada, tiburón, atún rojo, se sugiere que las mujeres embarazadas, con sospecha, o en periodo de lactancia no las consuman; que los niños < 3 años no las consumen; que los niños de 3-12 años limiten su consumo a 50g/semana o 100g/quincenal y no incluir pescados de la misma categoría en la misma semana.

 

 Tabla 1. Máximo limite tolerable de consumo de metales a través de la carne de pescado

Metal Tipo de pescado Límite máximo Referencia
Plomo Carne de pescado en general 0.3 mg/kg Referencia 7
Cadmio Carne de pescado excluidas las especies especificadas líneas abajo 0.05 mg/kg Referencia 8
Carne de caballa (Scomber species), atún (Thunnus species, Euthynnus species, Katsuwonus pelamis) y bichique (Sicyopterus lagocephalus) 0.10 mg/kg
Carne de melva (Auxis species) 0.15 mg/kg
Carne de anchoa (Engraulis species), pez espada (Xiphias gladius) y sardina (Sardina pilchardus) 0.25 mg/kg
Mercurio Carne de músculo de los siguientes pescados: rape (especie Lophius) bagre atlántico (Anarhichas lupus), bonito (Sarda sarda), anguila (especie de Anguila), emperador, reloj anaranjado, pez soldado rosado (especie Hoplostethus), granadero (Coryphaenoides rupestris), halibut (Hippoglossus hippoglossus), carpintero real (Genypterus capensis), marlín (especie Makaira), gallo (especie Lepidorhombus), salmonete (especie Mullus), anguila rosada (Genypterus blacodes), lucio (Esox lucius), bonito simple (Orcynopsis unicolor), pobre bacalao (Tricopterus minutos), cazón portugués (Centroscymnus coelolepis), rayas (especies Raja), gallineta nórdica (Sebastes marinus, S. mentella, S. viviparus), pez vela (Istiophorus platypterus), pez sable (Lepidopus caudatus, Aphanopus carbo), dorada, pandora (especie Pagellus), tiburón (todas las especies), caballa serpiente o pez mantequilla (Lepidocybium flavobrunneum, Ruvettus pretiosus, gempylus serpentario), esturión (especie Acipenser), pez espada (Xiphias gladius), atún (especie Thunnus, especie Euthynnus, Katsuwonus pelamis) 1.0 mg/kg Referencia 9

 

 

Investigación en Perú sobre la presencia de metales contaminantes en los pescados

En el Perú se requiere más investigación al respecto debido a nuestra particular diversidad geográfica con cuerpos de agua en mar, costa, sierra y selva. Al respecto, algunos trabajos de investigación han mostrado conclusiones que deben ser valoradas apropiadamente. Un estudio llevado a cabo en 2015 (11) en el Terminal Pesquero de Villa María del Triunfo determinó que el contenido de cadmio en jurel fue de 0.35 mg/kg, muy por encima del 0.05 mg/kg permitido por la regulación internacional.

Un estudio llevado a cabo en 2015 (12) buscó determinar el contenido de mercurio, cadmio, plomo y arsénico en 7 especies de peces (periche, dica, mojarra, chalaco, camotillo, lisa y sábalo) consumidos comúnmente y colectadas del río Tumbes. Los resultados obtenidos se compararon con los contenidos máximos permisibles (CMP) y los estándares a utilizar corresponden a arsénico, cadmio, mercurio y plomo, según la Unión Europea (2006) y Canadá (2009). Se determinó que el contenido promedio de Hg y As es inferior al CMP correspondiente, por lo cual se puede afirmar que sí cumple con dicho parámetro de calidad. Sin embargo, el contenido de Pb y Cd superó el parámetro de calidad CMP, no cumpliendo con dicho parámetro.

Un estudio llevado a cabo en 2021 (13), en las granjas de peces en el lago Titicaca encontró diferentes concentraciones de zinc, hierro, cadmio, manganeso, plomo, cobre y mercurio en la carne de truchas arcoíris; sin embargo, en ninguno de los casos las concentraciones superaron los niveles permitidos internacionalmente. Esto demostró que eran aptas para el consumo humano.

Un estudio llevado a cabo en 2019 (14) en el río Monzón en Huánuco mostró niveles por encima de los permitidos para cadmio, cobre y plomo en tres especies de peces bentónicos: boquichico, carachama y julilla. En los tres casos la mayor concentración de los metales se ubicó en el hígado, riñón y músculo respectivamente. Otros estudios han mostrado que algunos metales pesados también se pueden acumular en la cabeza del animal.

 

Recomendaciones

  • En principio, la recomendación más importante de todas es no evitar el consumo de pescado debido a su elevado valor nutricional.
  • No todas las especies presentan niveles preocupantes de contaminación. Elija las especies más pequeñas sobre las de mayor tamaño. Por ejemplo, la caballa sobre el perico.
  • El consumo de pescados de gran tamaño como atún, perico o pez espada debería hacerse una o dos veces por mes.
  • El consumo de sardina, caballa, jurel, bonito puede hacerse 2 a 3 veces por semana.
  • Revise la etiqueta de las conservas que utiliza con regularidad. Muchos de esos productos son importados desde Asia, donde existen mayores problemas de contaminación.
  • Las recomendaciones sobre consumo de una u otra especie no siempre aplican a la realidad peruana. Lo mismo puede ser tomado en cuenta por los demás países de la región.
  • En general, en Latinoamérica existe un riesgo creciente asociado con la contaminación de riesgo por la actividad minera ilegal. En este aspecto, se requiere mucha más investigación.

 

Si quieres aprender más sobre cómo aplicar esta información y otras más en el tratamiento nutricional de tus pacientes, participa de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFSIONAL EN NUTRICIÓN CLÍNICA. Haz click, AQUÍ, para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Suárez López M. M., Kizlansky A., López L. B.. Evaluación de la calidad de las proteínas en los alimentos calculando el escore de aminoácidos corregido por digestibilidad. Nutr. Hosp.  [Internet]. 2006  Feb [citado  2023  Feb  28] ;  21( 1 ): 47-51. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112006000100009&lng=es.
  2. Ahmed I, Jan K, Fatma S, Dawood MAO. Muscle proximate composition of various food fish species and their nutritional significance: A review. J Anim Physiol Anim Nutr (Berl). 2022 May;106(3):690-719. doi: 10.1111/jpn.13711. Epub 2022 Apr 8. PMID: 35395107.
  3. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016 Jan 15;96(1):32-48. doi: 10.1002/jsfa.7360. Epub 2015 Sep 7. PMID: 26238481.
  4. Medina-Pizzali María, Robles Pamela, Mendoza Mónica, Torres Celeste. Ingesta de arsénico: el impacto en la alimentación y la salud humana. Rev. perú. med. exp. salud publica  [Internet]. 2018  Ene [citado  2023  Feb  27] ;  35( 1 ): 93-102. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342018000100015&lng=es.  http://dx.doi.org/10.17843/rpmesp.2018.351.3604.
  5. Tomailla, J; Iannacone, J. Toxicidad letal y subletal del arsénico, cadmio, mercurio y plomo sobre el pez Parachaeirodon innesi neon tetra (Characidae) / Lethal and sublethal toxicity of arsenic, cadmium, mercury and lead on fish Paracheirodon innesi neon tetra (Characidae). Revista de toxicología [Internet]. toxicol ; 35(2): 95-105, 2018. Tab.
  6. Agencia Europea de Seguridad Alimentaria y Nutrición. Ficha técnica del arsénico. Disponible en: https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/ampliacion/arsenico.htm Vista en febrero 2023.
  7. Unión Europea. Reglamento (UE) 2021/1317 DE LA COMISIÓN de 9 de agosto de 2021 por el que se modifica el Reglamento (CE) n.o 1881/2006 en lo relativo a los contenidos máximos de plomo en determinados productos alimenticios.
  8. Unión Europea. Reglamento (UE) Nº 488/2014 de la Comisión, de 12 de mayo de 2014, que modifica el Reglamento (CE) Nº 1881/2006 por lo que respecta al contenido máximo de cadmio en los productos alimenticios. Diario Oficial de la Unión Europea L138, 13 de mayo de 2014, pp. 75.
  9. European Commission. Commission Regulation No629/2008 of 2 July 2008 amending Regulation No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal L 2008;173:6-9.
  10. Gonzalez M, Bodas A, Guillen J, Rubio M, Martinez J, Herraiz M, Martell N, et al. Documento de consenso sobre la prevención de la exposición al metilmercurio en España. Nutr Hosp. 2015;31(1):16-31
  11. Marín G, García M. CONTAMINACIÓN POR CADMIO EN ALIMENTOS MARINOS, LIMA – 2015. Ciencia e Investigación 2016; 19(1): 24-28
  12. Espinoza D, Falero S. Niveles de mercurio, cadmio, plomo y arsénico en peces del río Tumbes y riesgos para salud humana por su consumo. del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM Vol. 18, Nº 36, pp. 35 – 41 Julio – Diciembre 2015
  13. Chui H, Roque B, Huaquisto E, Sardón D, Belizario G, Calatayud A. Metales pesados en truchas arcoíris (Oncorhynchus mykiss) de crianza intensiva de la zona noroeste del lago Titicaca. Rev Inv Vet Perú 2021; 32(3): e20398. https://dx.doi.org/10.15381/rivep.v32i3.20398
  14. Rosales E, Cotrina M, Valdivieso G, Sales F, García E, Ordoñez E. Bioacumulación de metales pesados en tres especies de peces bentónicos del río Monzón, región Huánuco. REBIOL ISSN 2313-3171, Año 2019, Número 40 (1): 69 – 78, Enero – Junio. DOI: http://dx.doi.org/10.17268/rebiol.2020.40.01.08

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
Abrir chat
1
Bienvenidos a IIDENUT
¿En qué puedo ayudarte?
AFÍLIATE